Policy Statement

Fecal microbiota transplantation (FMT) may be considered medically necessary for treatment of patients with recurrent Clostridium difficile infection under both of the following conditions (see Policy Guidelines section):

- Episodes are refractory to appropriate antibiotic regimens, including at least one regimen of pulsed vancomycin
- There have been at least three episodes of recurrent infection

Fecal microbiota transplantation (FMT) is considered investigational in all other situations.

Policy Guidelines

Coding

The following CPT code is specific for preparation of fecal microbiota transplantation (FMT):

- 44705: Preparation of fecal microbiota for instillation, including assessment of donor specimen

The following HCPCS code includes the preparation as well as the instillation:

- G0455: Preparation with instillation of fecal microbiota by any method, including assessment of donor specimen

There is a lack of consensus on the number of recurrences that warrants consideration of FMT.

Among the two published randomized controlled trials evaluating FMT for treatment of Clostridium difficile infection (CDI), the van Nood study (2013) included patients with at least one recurrence of CDI; the other study, the Youngster study (2014), included patients with a relapse after at least three episodes of mild-to-moderate CDI or at least two episodes of severe CDI (both studies are described in the Rationale section.)

The 2013 American College of Gastroenterology guidelines recommended that FMT be considered second-line therapy for a third recurrence of CDI.

Description

Fecal microbiota transplantation (FMT) involves the infusion of intestinal microorganisms via transfer of stool from a healthy person into a diseased patient, with the intent of restoring normal intestinal flora. Fecal transplant is proposed for treatment-refractory Clostridium difficile infection (CDI) and other conditions, including inflammatory bowel disease.

Related Policies

- Fecal Analysis in the Diagnosis of Intestinal Dysbiosis

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.
Some state or federal mandates [e.g., Federal Employee Program (FEP)] prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

Regulatory Status

In July 2013, the U.S. Food and Drug Administration (FDA) issued guidance on investigational new drug requirements for the use of FMT to treat CDI not responsive to medication therapy. The FDA guidance stated that the FDA is continuing to consider how to regulate FMT and that, during this interim period, the agency will use enforcement discretion regarding the use of fecal transplant to treat treatment-resistant CDI infections. The FDA requires that physicians obtain adequate informed consent from patients or their legal representative before performing the intervention. The document also noted that selective enforcement does not apply to use of fecal transplant for treating conditions other than treatment-resistant CDI.

Rationale

Background

Fecal Microbiota

Fecal microbiota transplantation (FMT), also called donor feces infusion, intestinal microbiota transplantation, and fecal bacteriotherapy, involves the infusion of intestinal microorganisms via transfer of stool from a healthy individual into a diseased individual to restore normal intestinal flora. The stool can be infused as a liquid suspension into a patient's upper gastrointestinal tract though a nasogastric tube or gastroscopy, or the stool can be infused into the colon through a colonoscope or rectal catheter.

The goal of FMT is to replace damaged and/or disordered native microbiota with a stable community of donor microorganisms. The treatment is based on the premise that an imbalance in the community of microorganisms residing in the gastrointestinal tract (i.e., dysbiosis) is associated with specific disease states, including susceptibility to infection.

The human microbiota, defined as the aggregate of microorganisms (bacteria, fungi, archaea) on and in the human body, is believed to consist of approximately 10 to 100 trillion cells, approximately 10 times the number of human cells. Most human microbes reside in the intestinal tract, and most of these are bacteria. In its healthy state, intestinal microbiota perform a variety of useful functions including aiding in the digestion of carbohydrates, mediating the synthesis of certain vitamins, repressing the growth of pathogenic microbes, and stimulating the lymphoid tissue to produce antibodies to pathogens.

Applications

Clostridium difficile Infection

To date, the major potential clinical application of FMT is the treatment of Clostridium difficile infection (CDI). Infection of the colon with C. difficile is a major cause of colitis and can cause life-threatening conditions including colonic perforation and toxic megacolon. C. difficile occurs naturally in intestinal flora. The incidence of CDI in North America has increased substantially in the past decade. For example, according to hospital discharge diagnosis data, there were more than 300,000 cases of CDI in 2006 compared with fewer than 150,000 cases in 2000. Moreover, CDI causes an estimated 15,000 to 20,000 deaths per year in U.S. hospitals.\(^1\,^2\)

It is unclear what causes C. difficile overgrowth, but disruption of the normal colonic flora and colonization by C. difficile are major components. Disruption of the normal colonic flora occurs most commonly following administration of oral, parenteral, or topical antibiotics. Standard treatment for CDI is antibiotic therapy. However, symptoms recur in up to 35% of patients, and up to 65% of patients with recurrences develop a chronic recurrent pattern of CDI.\(^3\)
Other Applications
Other potential uses of FMT include treatment of conditions in which altered colonic flora may play a role. They include inflammatory bowel disease, irritable bowel syndrome, idiopathic constipation, and non-gastrointestinal disease such as multiple sclerosis, obesity, autism, and chronic fatigue syndrome. However, for these conditions, the contribution of alterations in colonic flora to the disorder is uncertain or controversial.

There is interest in alternatives to human feces that might have the same beneficial effects on intestinal microbiota without the risks of disease transmission. A proof of principle study, published in 2013, evaluated a synthetic stool product in 2 patients with recurrent CDI. The product is made from 33 bacterial isolates developed from culturing stool from a healthy donor.

Literature Review
Assessment of efficacy for therapeutic intervention involves a determination of whether an intervention improves health outcomes. The optimal study design for this purpose is a randomized controlled trial (RCT) that includes clinically relevant measures of health outcomes. Intermediate outcome measures, also known as surrogate outcome measures, may also be adequate if there is an established link between the intermediate outcome and true health outcomes. Nonrandomized comparative studies and uncontrolled studies can sometimes provide useful information on health outcomes, but are prone to biases such as noncomparability of treatment groups, placebo effect, and variable natural history of the condition. The following is a description of the key literature to date.

Recurrent Clostridium difficile Infection
The available literature on Clostridium difficile infection (CDI) consists of RCTs, numerous uncontrolled studies, and systematic reviews. Other than a few case reports of patients with acute CDI, studies treated patients with recurrent CDI. The case series reported few adverse events.

Systematic Reviews
In 2015, Drekonja et al systematically reviewed the literature on fecal microbiota transplantation (FMT) for treating CDI. In addition to the 2 RCTs, reviewers identified 28 case series and 5 case reports. Twenty-one case series included patients with recurrent CDI. In these studies, 85% of patients treated with FMT remained free of symptoms without additional recurrences (the number of patients successfully treated was not reported). Seven case series included patients with refractory CDI, defined as an episode of CDI that did not respond to antimicrobial treatment. Resolution of symptoms in the studies on refractory CDI ranged widely, from 0% to 100%, with an overall resolution rate of 55%. There were reports of only 7 patients treated with FMT for initial CDI. The case series reported few adverse events.

In 2017, Quraishi et al published a systematic review and meta-analysis of 7 RCTs comparing FMT with standard antibiotic regimen in 1973 patients with recurrent and refractory CDI (follow-up, 10-13 weeks), and 30 case series (sample sizes ≥10 patients) describing the effect of FMT in 1545 patients with recurrent and refractory CDI. Reviewers deemed the 7 RCTs as having a low risk of bias (including adequate randomization with allocation concealment and intention-to-treat analysis). Reviewers did not report an assessment of bias in terms of blinding, sample size adequacy, or possible differences in baseline characteristics. They argued that none of trials examining the efficacy of FMT were truly placebo controlled, and the 30 case series followed patients until resolution of CDI (range, 10 weeks to 8 years), though some had incomplete follow-up. In the pooled analysis, 92% of patients had a resolution of CDI (95% confidence interval [CI], 89% to 94%); heterogeneity was classified as likely moderate ($I^2=59$%). Additionally, in the 7 trials that evaluated FMT, the intervention overall was associated with an increase in the resolution of recurrent and refractory CDI (relative risk [RR], 0.23; 95% CI, 0.07 to 0.80). The 30 case series reported resolution rates for CDI from 68% to 100%.
The Quraishi review found FMT to be effective in the treatment of recurrent and refractory CDI, and no serious adverse events from FMT were reported in the RCTs through the follow-up period. Most adverse effects in the case series were minor (bloating, belching, abdominal cramps, pain or discomfort, nausea, vomiting, excess flatulence, constipation, transient fever, urinary tract infections, self-limiting diarrhea, irregular bowel movement). However, reviewers noted several limitations. Based on variability in the definitions of CDI resolution used across the studies, reviewers could not distinguish between recurrent and refractory CDI. There were also variations across studies in terms of recipient preparations, number of infusions, time to resolution, follow-up, overall response, dosing, concurrent use of medications, and other unspecified biases. Heterogeneity between most studies was considerable.

Randomized Controlled Trials

In 2013 van Nood et al published a nonblinded trial that included 43 patients 18 years and older with at least 1 recurrence of CDI. Exclusion criteria included prolonged compromised immunity, admission to an intensive care unit, and need for vasopressor medication. Patients were randomized to 1 of 3 treatment groups: (1) FMT (here called donor feces infusion; n=17); (2) antibiotic therapy (n=13); or (3) antibiotics and bowel lavage (n=13). The FMT intervention involved collecting feces from healthy screened donors on the day of infusion, diluting the feces with 500 mL of sterile saline, and infusing the solution (mean, 141 g) through a nasoduodenal tube. Patients assigned to the FMT group also received a modified course of vancomycin (500 mg orally 4 times a day for 4-5 days) and bowel lavage before infusion. A second infusion was given to patients in the FMT group who relapsed after the first treatment. Potential donors underwent an evaluation that included completing a questionnaire on potential risk factors for transmissible diseases, screening feces for parasites, and blood screening for antibodies for viruses. The trial was initially designed to enroll 120 patients (40 per group), but, because of the high relapse rate in the control groups, the data and safety monitoring group recommended early trial termination.

The primary efficacy outcome was cure without relapse within 10 weeks of initiating treatment. Cure was defined as absence of diarrhea that could not be explained by other causes and 3 consecutive negative tests for CDI toxin. Relapse was defined as diarrhea with a positive stool test for CDI toxin during this 10-week period. For the 3 patients who received a second infusion, follow-up was extended to 10 weeks after the second treatment. Patients were questioned about symptoms of diarrhea, and stool tests were performed on days 14, 21, 35, and 70 and when diarrhea was reported. One patient in the FMT group was excluded from analysis.

Fifteen (94%) of 16 analyzed patients in the FMT group were cured (13 after a single infusion, 2 after a second infusion from a different donor). In contrast, only 4 (31%) of 13 patients in the antibiotics-only group and 3 (23%) of 13 patients in the antibiotics and bowel lavage group were cured. The overall cure rate was significantly higher in the FMT group than in the other 2 groups (p<0.001). Most patients in the FMT group experienced short-term adverse events (i.e., diarrhea in 94%, cramping in 31%, belching in 19%) that resolved within 3 hours.

Data on the diversity of fecal microbiota were available for 9 patients in the FMT group. Diversity was measured on a scale from 1 to 250, with higher values indicating more diversity. Before infusion, mean microbiota diversity was low (mean, 57; SD=26). Within 2 weeks of infusion, mean diversity increased to 179 (SD=42), a level similar to the diversity levels in the donors (mean, 172; SD=54).

Kelly et al (2016) published the findings from a multicenter, double-blinded RCT that included 46 patients (mean age, 48-55 years) who had 3 or more recurrences of CDI and received a full course of vancomycin for their most recent acute episode. Patients were randomized to FMT with donor stool (heterologous, n=22) or patient’s personal stool (autologous, n=24) administered by colonoscopy. There were possible baseline differences in the mean duration of CDI since initial dose, mean CDI recurrences, and the prior use of Lactobacillus, fidaxomicin, or proton-pump inhibitor. Forty-three patients completed the 8-week follow-up evaluation, and the
principal investigators terminated enrollment after 28 months in light of data on the efficacy of FMT. However, the intention-to-treat analysis included all enrolled patients.

Both patients and screened donors provided fresh stool the day of the FMT and randomization occurred shortly before the procedure. By protocol, stool 100 g was diluted in 500 mL 0.9% normal saline (or a proportional amount of saline if less stool was available). The physician administered 300 mL of fecal suspension via colonoscopy.

The primary end point was CDI resolution, defined as the resolution of diarrhea without the need for further anti-CDI therapy throughout the follow-up period. Fecal microbiota analyses of patient and donor stool before and after FMT demonstrated an overall CDI resolution of 90.9% in the heterologous FMT group compared with a CDI resolution of 62.5% in the autologous FMT group (p=0.042). However, there were notable differences in efficacy by site. CDI resolution with heterologous FMT at the first site was 90.0% (95% CI, 51.8% to 98.7%) vs 42.9% (95% CI, 20.1% to 69.0%) with autologous FMT. The second site reported CDI resolution with heterologous FMT to be 91.7% (95% CI, 57.2% to 98.9%) compared with 90.0% (95% CI, 51.8% to 98.7%) in the autologous FMT group. The authors cautioned that the observed variability in efficacy between sites suggested that patients who have a lower risk of CDI recurrence may not benefit from FMT. For patients with clinical failure, failure occurred at a mean of 10 days postprocedure. Rates of adverse events were similar in the 2 groups. Four serious adverse events were reported, but none of the events were attributed to FMT or colonoscopy. Reported study limitations included the following factors:

- No data collection on the severity of previous CDI episodes or antibody titers
- Possibly limited representation of the CDI population due to the exclusion of patients aged 75 or older
- Possibly limited representation of the CDI population due to the inclusion of a younger cohort of patients
- Dosing differences
- The possibility of overdiagnosis of CDI due to the use of polymerase chain reaction testing of stool to diagnose CDI
- The lack of power to assess rare, severe adverse events

Uncontrolled Studies
Several systematic reviews of uncontrolled studies on FMT for treating CDI have been published. Of these, only Sofi et al (2013) conducted a pooled data analysis. Reviewers searched the literature through April 2012, and could not find any RCTs that evaluated FMT (none had been published at that time). Reviewers did find a total of 25 observational studies (10 case reports, 15 case series), which provided data on 239 adults treated with FMT for CDI. All case series were retrospective, and sample sizes ranged from 4 to 70 patients; only 4 studies included more than 25 patients. Most studies included recurrent CDI, but several case reports treated patients who were severely ill due to acute CDI. Fecal transplants were performed by the gastroduodenal route in 91 (32%) patients and by the colonic route in 198 (68%) patients. Treatment success was defined as resolution of CDI symptoms at follow-up. Mean follow-up posttransplant ranged from 10 days to 65 months. In a pooled analysis of individual patient data, the overall treatment success rate was 91.2%. Subgroup analyses revealed a significantly higher treatment failure rate in patients treated colonically vs the duodenal route; moreover, these analyses revealed a higher treatment failure rate in patients who experienced symptoms for at least 60 days vs fewer than 60 days.

Procedural Approaches
Route of Administration

Systematic Reviews
The 2017 systematic review and meta-analysis by Quraishi et al (discussed previously) included a subgroup analysis of FMT delivery. Pooled analysis of 7 RCTs and 25 case series revealed a significant difference between lower gastrointestinal delivery (95%, 95% CI, 92% to 97%) and
upper gastrointestinal delivery (88%; 95% CI, 82% to 94%; p=0.02). Reviewers concluded that FMT appeared to be effective in the treatment of recurrent and refractory CDI, independent of delivery route.

Randomized Controlled Trials

A 2014 RCT by Youngster et al compared infusion of donor stools administered by colonoscopy or nasogastric tube.\(^\text{13}\) Twenty patients with relapsing and recurrent CDI were included. Patients had to have a relapse of CDI following at least 3 episodes of mild-to-moderate CDI and failure of a course of vancomycin, or at least 2 episodes of severe CDI that resulted in hospitalization and was associated with significant morbidity. All patients underwent FMT and were randomized to 1 of 2 infusion routes: colonoscopy or nasogastric tube. Both groups received thawed inoculum 90 mL. Stool donors were healthy nonrelatives who successfully completed an extensive screening process. Stool was frozen up to 156 days before use. Patients could receive a second FMT if symptoms did not resolve following the initial transplant. The primary efficacy outcome was clinical cure, defined as resolution of diarrhea (i.e., <3 bowel movements per 24 hours) while off antibiotics for CDI, without relapse for 8 weeks. Fourteen patients were cured after the first FMT, eight in the colonoscopy group and six in the nasogastric tube group; the difference between groups was not statistically significant (p=0.628). Of the remaining 6 patients, one refused additional treatment, and the other five underwent a second transplant. By study protocol, patients could choose the route of administration for the second procedure, and all chose the nasogastric tube. Four additional patients were cured after the second transplant, for an overall cure rate of 18 (90%) of 20. This trial did not find either route of administration of donor feces to be superior to the other; however, it was reported that patients preferred nasogastric tube.

Fresh vs Frozen Feces

Systematic Reviews

The 2017 Quraishi systematic review also included a subgroup analysis of FMT preparation. Only 1 RCT in the review directly compared the effects of fresh stool to prepare FMT (n=11) with frozen stool to prepare FMT (n=108) on CDI resolution (RR=1.19; 95% CI, 0.77 to 1.84). The remaining 30 case series used frozen stool to prepare FMT. Two RCTs and 2 case series used fresh stool to prepare FMT. The pooled analyses found no difference between fresh FMT (92%; 95% CI, 89% to 95%), with moderate heterogeneity ($I^2=54\%$) and frozen FMT (93%; 95% CI, 87% to 97%; p=0.84), with minimal heterogeneity reported ($I^2=19\%$). Reviewers concluded that FMT appeared to be effective in the treatment of recurrent and refractory CDI, independent of FMT preparation.

Randomized Controlled Trials

A 2016 double-blind RCT by Lee et al compared fresh with frozen stool used in FMT to treat patients with recurrent CDI.\(^\text{14}\) A total of 232 patients were included, 114 assigned to frozen FMT and 118 to fresh FMT. The primary endpoint was the proportion of patients with no recurrence of CDI-related diarrhea 13 weeks after FMT. The trial was designed as a noninferiority trial and had a noninferiority margin of 15%. In the per-protocol population (n=178), the rate of clinical resolution of symptoms was 76 (83.5%) of 91 in the frozen FMT group and 74 (85.1%) of 87 in the fresh FMT group (difference, -1.6%; 95% 1-sided confidence interval [CI], -10.5% to infinity). In the modified intention-to-treat group, the rate of clinical resolution with up to 2 FMT treatments was 81 (75.0%) of 108 in the frozen FMT group and 78 (70.3%) of 111 in the fresh FMT group (difference, 4.7%; 95% 1-sided CI, -5.2% to infinity). The difference between groups was within the 15% noninferiority margin, and thus frozen FMT was considered noninferior to fresh FMT.

Section Summary: Recurrent Clostridium difficile Infection

A systematic review and meta-analysis of 7 RCTs and 30 case series concluded that FMT appeared to be effective in the treatment of recurrent and refractory CDI, independent of preparation and route of delivery. One small RCT, which enrolled patients who had failed at least 1 course of antibiotic treatment, reported a large increase in resolution of CDI with FMT plus antibiotics compared with antibiotics with or without bowel lavage. A double-blinded,
multicenter RCT using fresh heterologous stool administered via colonoscopy; patients in this RCT had 3 or more recurrences of CDI and received a full course of vancomycin. Moreover, reviewers found FMT to be effective in preventing further episodes of CDI during an 8-week follow-up period. RCTs evaluating procedural differences found similar success rates with FMT administered via colonoscopy vs gastric tube and with fresh vs frozen FMT. Uncontrolled studies have reported high rates of resolution of recurrent CDI following treatment with FMT.

Inflammatory Bowel Disease

Randomized Controlled Trials

In 2015, 2 double-blind placebo-controlled randomized trials evaluated FMT for treatment of ulcerative colitis (UC). Both trials were discontinued due to futility but one ultimately had positive findings. The 2 RCTs varied in their control conditions, outcomes measures, and intervention lengths.

Moayyedi et al (2015) enrolled 75 patients aged 18 and older with active UC (Mayo Clinic score ≥4, endoscopic Mayo Clinic score, ≥1) and without CDI. Patients were randomized to FMT (n=38) or placebo (n=37). The intervention consisted of 6 weekly treatments with donor stool solution or placebo, given as a retention enema. Donors were screened prospectively for pathogens and rescreened every 6 months. Patients underwent clinical and endoscopic examination at week 7 (±3 days). The primary outcome was UC remission at week 7, defined as a full Mayo score less than 3 and a flexible sigmoidoscopy finding of complete healing of the mucosa (endoscopic Mayo score, 0).

The investigators initially aimed to recruit 130 patients. After 50% of participants were enrolled, the data monitoring and safety committee recommended trial discontinuation for futility, and completion of the trial for enrolled patients. At the 7-week follow-up, 9 (24%) of 38 patients in the FMT group and 2 (5%) of 37 patients in the placebo group achieved UC remission. The difference between groups was statistically significant (p=0.03). There was no significant difference between groups in adverse event rates.

Rossen et al (2015) included 50 patients with mild to moderately active UC. To participate, patients had to have a patient-reported Simple Clinical Colitis Activity Index score between 4 and 11, an endoscopic Mayo score of 1 or more, and stable medication use. Patients were randomized to 2 treatments with FMT, 3 weeks apart, or a placebo intervention (autologous FMT). FMT was done via a nasoduodenal tube using fecal suspension 500 mL. Patients underwent clinical and endoscopic examination at baseline, 6 weeks, and 12 weeks. The primary endpoint was clinical remission at 12 weeks, defined as an Simple Clinical Colitis Activity Index score of 2 or less and at least a 1-point improvement on the combined Mayo endoscopic score of the sigmoid and rectum.

Investigators initially calculated that a sample size of 42 patients was needed for the primary outcome analysis. The sample size calculated assumed a response rate of 70% in the treatment group and 22.5% in the control group. At the first interim analysis, after 20 patients had completed 12 weeks of follow-up, a lower response rate was observed and an increase in the sample size was recommended. At the second interim analysis, the data monitoring and safety committee recommended terminating the trial for futility. At study termination, 50 patients had been randomized. Two patients were excluded from the study postrandomization, leaving 48 patients in the intention-to-treat analysis. Thirty-seven patients completed the study. In the intention-to-treat analysis of the primary outcome measure, 7 (30.4%) of 23 patients in the active FMT group and 8 (32%) of 25 patients in the control group met criteria for clinical remission. The difference between groups was not statistically significant (p=0.8). Four patients (2 in each group) experienced a serious adverse event. Other than 1 case of abdominal pain, the serious adverse events were not considered treatment-related. Most patients experienced mild adverse events during or shortly after treatment, the most common of which were transient borborygmus and increase in stool frequency.
Uncontrolled Studies
In 2014, Sha et al published a systematic review of observational data on FMT for treatment of inflammatory bowel disease (IBD). Reviewers identified reports of 111 IBD patients (UC and Crohn disease) worldwide who received fecal transplants for IBD. All studies were case series. Remission was achieved in 87 (77.8%) of 111 IBD patients.

Section Summary: Inflammatory Bowel Disease
Two small RCTs on FMT for treatment of UC have been published. Both trials were discontinued for futility, and poor data (data were from already enrolled patients and were already analyzed). One trial found a statistically significant higher remission rate after active FMT than after a control intervention, but the implications of this finding are tempered by the low numbers of patients with remission (n=11) and short follow-up (7 weeks). The other trial reported no difference in remission rates. This evidence is not sufficient to permit conclusions on the efficacy of FMT for UC. Additionally, questions remain about the optimal route of administration, donor characteristics, and number of transplants. Data on a small number of patients with Crohn disease are available, and there are no controlled studies of FMT in this population.

Pouchitis, Irritable Bowel Syndrome, Constipation, or Metabolic Syndrome
A 2015 systematic review by Rossen et al of studies on FMT identified 1 case series on constipation (N=3 patients), 1 on pouchitis (N=8 patients), and 1 on irritable bowel syndrome (N=13 patients). There was also 1 small RCT (N=18) on FMT for treatment of metabolic syndrome. The RCT by Vrieze et al (2012) compared donor microbiota transplantation with placebo (reinfusion of own collected feces). The authors found a significantly greater improvement in peripheral insulin sensitivity in the active FMT group but no difference between groups in hepatic insulin sensitivity.

Section Summary: Pouchitis, Irritable Bowel Syndrome, Constipation, or Metabolic Syndrome
There is insufficient evidence on the efficacy and safety of FMT for treating conditions including pouchitis, irritable bowel syndrome, constipation, and metabolic syndrome. The evidence consists primarily of a few small case series; a small RCT on FMT for treating metabolic syndrome had mixed findings and did not report clinical outcomes (e.g., symptom improvement).

Adverse events
In 2016, Wang et al published a systematic review of adverse events associated with FMT. Reviewers identified 50 publications (total N=1089 FMT-treated patients). Of these, 831 patients were affected by CDI, 235 had IBD, and the remainder had miscellaneous indications. The overall incidence of adverse events in the studies was 28.5% (310/1089). Most reported adverse events were mild-to-moderate in severity and included abdominal cramping, flatulence, fever, and belching. A total of 9.2% (100/1089) patients developed serious adverse events. Thirty-eight patients died. Reviewers attributed 1 death to be definitely related to FMT, 2 were possibly related, and 35 were unrelated. The definitely related death was due to aspiration during colonoscopy sedation, and the two possibly related deaths were associated with infections (due either to FMT or the patients’ immunocompromised state). The incidence of severe infection was 2.5% (27/1089). Reviewers categorized 8 cases of severe infection as probably or possibly related to FMT; the other 19 cases were categorized as unrelated.

Summary of Evidence
For individuals who have recurrent CDI refractory to antibiotic therapy who receive FMT, the evidence includes RCTs and observational studies. Relevant outcomes are symptoms, change in disease status, and treatment-related morbidity. The RCTs found that FMT was more effective than standard treatment or placebo for patients with recurrent CDI. Other RCTs did not find the superiority of any route of administration over another or the superiority of fresh vs frozen feces. Case reports and case series have reported high rates of resolution of recurrent CDI following treatment with FMT. Few treatment-related adverse events have been reported. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.
For individuals who have inflammatory bowel disease who receive FMT, the evidence includes 2 RCTs in patients with ulcerative colitis as well as observational studies. Relevant outcomes are symptoms, change in disease status, and treatment-related morbidity. Two small RCTs on FMT for treatment of ulcerative colitis were discontinued due to futility and poor data analyzed for patients already enrolled. Of the 2 small RCTs, one found a statistically significant higher remission rate after active FMT than after a control intervention, but this trial had few patients in remission (n=11) and short follow-up (7 weeks); the other trial reported no difference in remission rates. Data on a small number of patients with Crohn disease are available; however, there are no controlled studies of FMT in this population. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have pouchitis, irritable bowel syndrome, constipation, or metabolic syndrome who receive FMT, the evidence includes a small number of case series and/or case reports. Relevant outcomes are symptoms, change in disease status, and treatment-related morbidity. Data are available for only a limited number of patients, and there is a lack of comparative studies. The evidence is insufficient to determine the effects of the technology on health outcomes.

Supplemental Information

Clinical Input from Physician Specialty Societies and Academic Medical Centers

While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

In response to requests from Blue Cross Blue Shield Association, input was received from 5 clinicians associated with 3 physician specialty societies and from 5 clinicians at 2 academic medical centers in 2014. There was near consensus that fecal transplantation may be considered medically necessary for treating at least some patients with Clostridium difficile infection (CDI). There was also near consensus that fecal microbiota transplant (FMT) is considered investigational for inflammatory bowel disease; moreover, there was consensus that FMT is considered investigational for conditions other than those previously mentioned. Input was mixed on criteria for selecting patients with CDI for fecal transplantation; in general, the number of FMT recurrences was considered an important criterion. There was near consensus among reviewers that there are potential safety concerns associated with FMT, and that these concerns should be studied further before the procedure is offered routinely in clinical practice.

Practice Guidelines and Position Statements

In 2013, the American College of Gastroenterology published guidelines on diagnosis, treatment, and prevention of Clostridium difficile infection (CDI).21 The guidelines addressed fecal microbiota transplant (FMT) for treatment of 3 or more CDI recurrences, as follows:

"If there is a third recurrence after a pulsed vancomycin regimen, fecal microbiota transplant (FMT) should be considered. (Conditional recommendation, moderate-quality evidence)"

For treatment of 1 to 2 CDI recurrences, the guidelines recommended:

"The first recurrence of CDI can be treated with the same regimen that was used for the initial episode. If severe, however, vancomycin should be used. The second recurrence should be treated with a pulsed vancomycin regimen. (Conditional recommendation, low-quality evidence)"

U.S. Preventive Services Task Force Recommendations

Not applicable.
Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials

Some currently unpublished trials that might influence this review are listed in Table 1.

Table 1. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02526849</td>
<td>Efficacy and Safety of Fecal Microbiota Transplantation for Slow Transit Constipation</td>
<td>100</td>
<td>Jun 2017</td>
</tr>
<tr>
<td>NCT02255305</td>
<td>FMT Versus Antimicrobials for Initial Treatment of Recurrent CDI</td>
<td>60</td>
<td>Dec 2018</td>
</tr>
<tr>
<td>NCT02328547</td>
<td>Fecal Microbiota Transplantation for the Treatment of Diarrhea-Predominant IBS</td>
<td>110</td>
<td>Jul 2018</td>
</tr>
<tr>
<td>NCT02743234</td>
<td>Fecal Microbiota Transplantation for Relapsing Clostridium Difficile Infection (FACIT)</td>
<td>64</td>
<td>Apr 2019</td>
</tr>
<tr>
<td>NCT02801656</td>
<td>Fecal Microbiota Transplantation for Primary Clostridium Difficile Diarrhea</td>
<td>130</td>
<td>Dec 2019</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01896635</td>
<td>Fecal Microbiota Transplantation in Ulcerative Colitis (FOCUS)</td>
<td>80</td>
<td>Aug 2016</td>
</tr>
</tbody>
</table>

NCT: National Clinical Trial.

References

Documentation for Clinical Review

Please provide the following documentation (if/when requested):

- History and physical and/or consultation notes including:
 - Number of episodes of recurrent Clostridium difficile infection
 - Past treatment regimen(s) including antibiotic used and responses
 - Procedure report(s)

Post Service

- Results/reports of tests performed

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms.
of the Policy. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement.

MN/IE

The following services may be considered medically necessary in certain instances and investigational in others. Services may be considered medically necessary when policy criteria are met. Services may be considered investigational when the policy criteria are not met or when the code describes application of a product in the position statement that is investigational.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT®</td>
<td>44705</td>
<td>Preparation of fecal microbiota for instillation, including assessment of donor specimen</td>
</tr>
<tr>
<td>HCPCS</td>
<td>G0455</td>
<td>Preparation with instillation of fecal microbiota by any method, including assessment of donor specimen</td>
</tr>
<tr>
<td>ICD-10 Procedure</td>
<td>None</td>
<td>All Diagnoses</td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/30/2014</td>
<td>BCBSA Medical Policy adoption</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>09/30/2015</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>03/01/2016</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>12/01/2016</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>10/01/2017</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>01/01/2018</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
</tbody>
</table>

Definitions of Decision Determinations

Medically Necessary: A treatment, procedure, or drug is medically necessary only when it has been established as safe and effective for the particular symptoms or diagnosis, is not investigational or experimental, is not being provided primarily for the convenience of the patient or the provider, and is provided at the most appropriate level to treat the condition.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.
Prior Authorization Requirements (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member's health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member's eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department. Please call (800) 541-6652 or visit the provider portal at www.blueshieldca.com/provider.

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.