Policy Statement

Sipuleucel-T therapy may be considered **medically necessary** in the treatment of asymptomatic or minimally symptomatic, androgen-independent (castration-resistant) metastatic prostate cancer.

Sipuleucel-T therapy is considered **investigational** for the treatment of prostate cancer in all other situations, including but not limited to:
- Treatment of hormone-responsive prostate cancer
- Treatment of moderate-to-severe symptomatic metastatic prostate cancer
- Treatment of visceral (liver, lung, or brain) metastases

Policy Guidelines

The following HCPCS code is available for this product:
- **Q2043**: Sipuleucel-T, minimum of 50 million autologous cd54+ cells activated with PAP-GM-CSF, including leukapheresis and all other preparatory procedures, per infusion

Description

Sipuleucel-T (Provenge) is a class of therapeutic agent used to treat asymptomatic—or minimally symptomatic—castration-resistant, metastatic prostate cancer. The agent comprises specially treated dendritic cells obtained from the patient through leukapheresis. The cells are then exposed in vitro to proteins that contain prostate antigens and immunologic-stimulating factors and reinfused into the patient. The proposed mechanism of action is that treatment stimulates the patient’s own immune system to resist cancer spread.

Related Policies

- Genetic and Protein Biomarkers for the Diagnosis and Cancer Risk Assessment of Prostate Cancer

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.
Regulatory Status

In 2010, the U.S. Food and Drug Administration approved Provenge® (sipuleucel-T; Dendreon Corp, now Sanpower) under a biologics licensing application for “the treatment of asymptomatic or minimally symptomatic metastatic castrate resistant (hormone refractory) prostate cancer.”4 Approval was contingent on the manufacturer conducting a postmarketing study, based on a registry design, to assess the risk of cerebrovascular events in 1500 men with prostate cancer who receive sipuleucel-T.

Rationale

Background
Prostate Cancer
Prostate cancer is the second leading cause of cancer-related deaths among American men, with an estimated incidence of 164,690 cases and an estimated number of 29,430 deaths in 2018.1 In most cases, prostate cancer is diagnosed at a localized stage and is treated with prostatectomy or radiotherapy. However, some patients are diagnosed with metastatic or recurrent disease after treatment of localized disease.

Treatment
Androgen ablation is the standard treatment for metastatic or recurrent disease. Most patients who survive long enough eventually develop androgen-independent (castration-resistant) prostate cancer. At this stage of metastatic disease, docetaxel, a chemotherapeutic agent, has demonstrated a survival benefit of 1.9 to 2.4 months in randomized clinical trials.2,3 Chemotherapy with docetaxel causes adverse events in large proportions of patients, including alopecia, fatigue, neutropenia, neuropathy, and other symptoms. Trials evaluating docetaxel included both asymptomatic and symptomatic patients, and results have suggested a survival benefit for both groups. Because of the burden of treatment and its adverse events, most patients defer docetaxel treatment until cancer recurrence is symptomatic.

Cancer immunotherapy has been investigated as a treatment that could be instituted at the point of detection of androgen-independent metastatic disease before significant symptomatic manifestations have occurred. The quantity of cancer cells in the patient during this time is thought to be relatively low, and it is thought that an effective immune response to the cancer during this interval could effectively delay or prevent progression. Such a delay could allow a course of effective chemotherapy, such as docetaxel, to be deferred or delayed until necessary, thus providing an overall survival benefit.

Literature Review
Evidence reviews assess the clinical evidence to determine whether the use of a technology improves the net health outcome. Broadly defined, health outcomes are length of life, quality of life, and ability to function—including benefits and harms. Every clinical condition has specific outcomes that are important to patients and to managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of a technology, 2 domains are examined: the relevance and the quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be
adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Metastatic, Castration-Resistant Prostate Cancer

Clinical Context and Therapy Purpose
The purpose of cellular immunotherapy with sipuleucel-T (Provenge) in patients who have metastatic castration-resistant prostate cancer is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Does cellular immunotherapy improve the net health outcome in men with asymptomatic or minimally symptomatic metastatic, castration-resistant prostate cancer?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is patients who have asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer.

Interventions
The therapy being considered is cellular immunotherapy, specifically, sipuleucel-T (Provenge) is a newer class of therapeutic agent used to treat asymptomatic or minimally symptomatic, androgen-independent (castration-resistant), metastatic prostate cancer. The agent comprises specially treated dendritic cells obtained from the patient through leukapheresis. The cells are then exposed in vitro to proteins that contain prostate antigens and immunologic-stimulating factors and reinfused into the patient. The cells are administered as 3 intravenous infusions given approximately 2 weeks apart. The proposed mechanism of action is that the treatment stimulates the patient's own immune system to resist cancer spread.

Comparators
The following therapy is currently being used to make decisions about asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer: standard treatment includes docetaxel, a chemotherapeutic agent. Chemotherapy with docetaxel causes adverse events in large proportions of patients, including alopecia, fatigue, neutropenia, neuropathy, and other symptoms.

Outcomes
The general outcomes of interest are the time to progression, mortality, and toxicity from treatment.

Timing
Median survival for metastatic castration-resistant prostate cancer is less than 2 years.

Setting
This treatment is administered in an outpatient care setting by an oncologist.

Systematic Reviews
Yi et al (2016) reported on a meta-analysis that identified 3 RCTs on sipuleucel-T for treating castration-resistant prostate cancer (see details below). A pooled analysis of the 3 RCTs found significantly improved overall survival (OS) with sipuleucel-T compared with placebo (hazard ratio [HR], 0.73; 95% confidence interval [CI], 0.61 to 0.88; P=0%). There was no significant difference between sipuleucel-T and placebo in time to progression of prostate cancer (HR=0.88; 95% CI, 0.74 to 1.06; P=4%). Rates of individual adverse events were pooled, and there were no significant differences between sipuleucel-T and placebo in any of the adverse events,
which consisted of fatigue, back pain, headache, arthralgia, and constipation. Stroke rates were not reported.

Randomized Controlled Trials
Sipuleucel-T has been studied in 3 double-blind, placebo-controlled randomized trials. These trials were published by Small et al (2006), Higano et al (2009), and Kantoff et al (2010), and were reviewed by the U.S. Food and Drug Administration (FDA). Patients enrolled in these trials all had castration-resistant metastatic prostate cancer, were asymptomatic or mildly symptomatic, in good physical health characterized by the Eastern Cooperative Oncology Group Performance Status at 0 or 1, and had tumors with positive staining for prostatic acid phosphatase.

Table 1 describes the 2 early identically designed studies. Patients with asymptomatic metastatic prostate cancer were randomized to sipuleucel-T or a control infusion of untreated dendritic cells. The principal outcome was time to disease progression, defined as the time from randomization to the first observation of disease progression. Disease progression could be defined as radiologic progression (based on several imaging criteria), clinical progression (based on prostate cancer–related clinical events, e.g., pathologic fracture), or pain progression (based on onset of pain corresponding to the anatomic location of the disease).

Studies were not designed to establish efficacy based on OS. On progression of cancer, patients were allowed additional treatment as needed, including chemotherapy. Patients originally assigned to a placebo were allowed to cross over by receiving their own dendritic cells pulsed with PA2024 antigen (recombinant fusion protein comprising human prostatic acid phosphatase linked to granulocyte-macrophage-colony-stimulating factor) but prepared from frozen dendritic cells harvested from their initial leukapheresis procedures.

Table 1. Characteristics of Randomized Phase 3 Trials of Sipuleucel-T

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Eligibility</th>
<th>Treatment</th>
<th>Outcomes</th>
</tr>
</thead>
</table>
| 9901A | Randomized double-blind, placebo-controlled | Metastatic prostate cancer by imaging, asymptomatic and progressing by imaging or rising PSA | Exp: 3 infusions of vaccine
Ctl: 3 infusions of placebo dendritic cells | Primary: disease progression (radiologic, clinical, pain)
Secondary: time to pain, time to progression |
| 9902A | Randomized double-blind, placebo-controlled | Metastatic prostate cancer by imaging, asymptomatic or minimally symptomatic and progressing by imaging or rising PSA | Exp: 3 infusions of vaccine
Ctl: 3 infusions of placebo dendritic cells | Primary: overall survival
Secondary: time to objective disease progression |
| IMPACT | Randomized double-blind, placebo-controlled | Metastatic prostate cancer by imaging, asymptomatic and progressing by imaging or rising PSA | Exp: 3 infusions of vaccine
Ctl: 3 infusions of placebo dendritic cells | Primary: disease progression (radiologic, clinical, pain)
Secondary: time to pain, time to progression |

Ctl: control arm; Exp: experimental arm; PSA: prostate-specific antigen.

As shown in Table 2, results of study 9901A for the principle outcome of time to progression did not show a significant difference between the vaccine and infusion control. Median time to progression was 11.7 weeks for the vaccine group and 10.0 weeks for the control group.

Table 2. Results of the Randomized, Phase 3 Trials of Sipuleucel-T

<table>
<thead>
<tr>
<th>Study</th>
<th>Vaccine Group</th>
<th>Control Group</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 9901A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>82</td>
<td>45</td>
<td>0.052</td>
</tr>
<tr>
<td>Median time to progression, wk</td>
<td>11.7</td>
<td>10.0</td>
<td>0.061</td>
</tr>
<tr>
<td>Median time to clinical progression, wk</td>
<td>10.7</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>Median overall survival, mo</td>
<td>25.9</td>
<td>21.4</td>
<td>0.01</td>
</tr>
<tr>
<td>Overall survival at 36 mo, %</td>
<td>34</td>
<td>11</td>
<td>0.005 (multivariable adjusted, 0.002)</td>
</tr>
</tbody>
</table>

Study 9902A
A survival analysis of study 9901A was presented in the FDA briefing document, with caveats that the study was not powered to show a survival effect and that a primary method of survival analysis was not prespecified in the protocol. Median survival times were 25.9 months for vaccine-treated patients and 21.4 months for placebo-treated patients, a statistically significant difference (p=0.011). At 36 months, the survival rate was 34% for vaccine-treated patients and 11% for placebo-treated patients.

The FDA briefing document also analyzed possible confounders in the survival analysis. After disease progression, patients in both groups received chemotherapy; however, the rate of chemotherapy was slightly higher in the placebo group (48% vs 36%, respectively). Examination of the causes of death did not reveal any obvious spurious elevation of noncancer deaths in the placebo group. The published version of study 9901A by Small et al (2006) analyzed the survival data after adjusting for prognostic factors and found a significant association between sipuleucel-T treatment and survival (HR=2.12; 95% CI, 1.31 to 3.44).7

Because study 9901A did not meet its principal outcome end point for efficacy, enrollment for its partner study 9902A was suspended. Its sample size was, therefore, smaller, and the study subsequently had lower statistical power. As shown in Table 2, results for study 9902A showed a median time to progression of 10.9 weeks in the vaccine group vs 9.9 weeks in the placebo group, which was not statistically significant. A survival analysis of study 9902A showed that median survival was 19 months in vaccine-treated patients and 15.7 months in control, which also was not statistically significant.

Higano et al (2009) pooled survival data from the 2 studies.8 Pooled analysis showed a 33% reduction in the risk of death (HR=1.50; 95% CI, 1.10 to 2.05; p=0.011). The association was robust to adjustments in imbalances in baseline prognostic factors and postprogression chemotherapy use.

Because these earlier studies did not meet criteria for success for their principal end points, The FDA did not approve sipuleucel-T in 2007. A larger phase 3 trial of similar design, Immunotherapy for Prostate Adenocarcinoma Treatment (IMPACT), enrolling 512 patients, was designed with a principal end point of OS.9 Analyses used to support the FDA approval reported a 22% reduction in overall mortality in patients treated with sipuleucel-T. Treatment extended median survival by 4.1 months compared with placebo (25.8 months vs 21.7 months, respectively) and improved relative 3-year survival by a 38% compared with placebo (31.7% vs 23.0%, respectively). Results adjusted for subsequent docetaxel use and timing, as well as analyses examining prostate cancer–specific survival, showed similar magnitude and statistical significance of the survival benefit. Of note, 14% of enrolled subjects in this trial had received prior docetaxel. In a retrospective, prespecified, multivariate subgroup analysis by Schellhammer et al (2013), several baseline factors were associated with OS: prostate-specific antigen (PSA) levels, lactate dehydrogenase levels, hemoglobin levels, the Eastern Cooperative Oncology Group Performance Status scores, alkaline phosphatase levels, and Gleason scores.11 Analysis of PSA levels by quartiles showed that men in the lowest quartile had the greatest survival benefit with sipuleucel-T: 49% reduced mortality rate compared with 26% reduced mortality rate in the second quartile, 19% in the third quartile, and 16% in the highest quartile.
Small et al (2014) pooled data for time to disease-related pain and time to first use of opioid analgesics from all 3 RCTs. Median time to disease-related pain was 5.6 months for sipuleucel-T and 5.3 months for control (HR=0.82; 95% CI, 0.62 to 1.09). Median time to first use of opioid analgesics was 12.6 months for sipuleucel-T and 9.7 months for control (HR=0.76; 95% CI, 0.58 to 0.99).

Regarding the safety of sipuleucel-T, most adverse events were grade 1 and 2 and resolved within 48 hours. The rate of serious adverse events did not differ statistically between vaccine- and placebo-treated patients. However, a difficulty in assessing potential adverse events by comparing sipuleucel-T with placebo is that placebo comprised infusion of untreated dendritic cells, which may cause adverse events. The FDA reviewers expressed concern about a possible association of sipuleucel-T with cerebrovascular events; 8 (5%) of 147 vaccine-treated patients experienced cerebrovascular-related adverse events, compared with zero placebo-treated patients in the 2 early trials. In the FDA review summarizing cerebrovascular event rates from studies 9901A, 9902A, and interim IMPACT data, the incidence of stroke was 4.9% (17/345) in sipuleucel-T-treated patients and 1.7% (3/172) in placebo-treated patients (p=0.092). The FDA review called the cerebrovascular event rate a “potential safety signal” and included as part of its approval a postmarketing study, based on a registry design, to assess the risk of cerebrovascular events in 1500 patients with prostate cancer who receive sipuleucel-T.

Section Summary: Metastatic, Castration-Resistant Prostate Cancer
For patients with metastatic, castration-resistant prostate cancer, 3 RCTs of sipuleucel-T have been published. The 3 RCTs are consistent in reporting an improvement in OS of approximately 4 months compared with placebo. Additionally, 2 trials also reported that 36-month survival was significantly improved for patients receiving sipuleucel-T, with absolute improvements in survival of 9% and 23%. Time to progression was slightly longer in the sipuleucel-T groups, but this difference was not statistically significant. A meta-analysis of the 3 RCTs found significantly improved OS, but not the time to progression, with sipuleucel-T compared with placebo. Serious adverse events were not increased in the sipuleucel-T groups. However, given data reported to the FDA, there was a concern about a possible increase in stroke risk and this is being studied in an ongoing postmarketing study.

Nonmetastatic, Androgen-Dependent Prostate Cancer
Clinical Context and Therapy Purpose
The purpose of cellular immunotherapy with sipuleucel-T (Provenge) in patients who have nonmetastatic, androgen-dependent prostate cancer is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Does cellular immunotherapy improve the net health outcome in men with nonmetastatic, androgen-dependent prostate cancer?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is patients who have nonmetastatic, androgen-dependent prostate cancer.

Interventions
The therapy being considered is cellular immunotherapy, specifically sipuleucel-T (Provenge), is a newer class of therapeutic agent used to treat asymptomatic or minimally symptomatic, androgen-independent (castration-resistant), metastatic prostate cancer. The agent comprises specially treated dendritic cells obtained from the patient through leukapheresis. The cells are then exposed in vitro to proteins that contain prostate antigens and immunologic-stimulating factors and reinfused into the patient. The cells are administered as 3 intravenous infusions given approximately 2 weeks apart. The proposed mechanism of action is that the treatment stimulates the patient’s own immune system to resist cancer spread.
Comparators
The following therapy is currently being used to make decisions about cellular immunotherapy: androgen deprivation therapy is the standard treatment for metastatic or recurrent disease.

Outcomes
The general outcomes of interest are the time to progression, mortality, and toxicity from treatment.

Timing
The time frame for outcome measures varies from short-term management of toxicity and symptoms of cancer progression or recurrence and OS.

Setting
This treatment is administered in an outpatient care setting by an oncologist.

Randomized Controlled Trials
Beer et al (2011) published an RCT evaluating sipuleucel-T in the setting of nonmetastatic, androgen-dependent prostate cancer. Patients with prostate cancer detectable by PSA levels after radical prostatectomy received 3 to 4 months of androgen suppression therapy and were then randomized (2:1) to sipuleucel-T (n=117) or to control (n=59). The primary end point was time to biochemical failure. The median time to biochemical failure was 18.0 months for sipuleucel-T and 15.4 months for control. The difference between groups was not statistically significant (HR=0.936, p=0.737). The PSA doubling time after testosterone recovery was 155 days in the sipuleucel-T group and 105 days in the placebo group (p=0.038). At the data cutoff point, 16% developed distant failure. The risk of distant failure did not significantly favor the sipuleucel-T group (p=0.021); however, the authors noted that this analysis had limited power.

Section Summary: Nonmetastatic, Androgen-Dependent Prostate Cancer
Only 1 RCT has evaluated sipuleucel-T in patients with nonmetastatic, androgen-dependent prostate cancer. This trial did not show a statistically significant benefit for sipuleucel-T compared with control. Therefore, evidence on treatment of nonmetastatic prostate cancer is not sufficiently robust to determine that health outcomes are improved.

Summary of Evidence
For individuals who have asymptomatic or minimally symptomatic, metastatic, castration-resistant prostate cancer who receive sipuleucel-T (Provenge), the evidence includes 3 RCTs and a systematic review of these RCTs. Relevant outcomes are overall survival, disease-specific survival, change in disease status, and treatment-related morbidity. The 2 earlier RCTs of sipuleucel-T were not specifically designed to demonstrate a difference in overall mortality but did show a survival difference. The third RCT, which was designed to demonstrate a mortality difference, showed a similar improvement in overall survival. All 3 studies were consistent in demonstrating that sipuleucel-T does not delay time to a measurable progression of the disease. A meta-analysis of the 3 RCTs found significantly improved overall survival, but not the time to progression, with sipuleucel-T compared with placebo. Serious adverse events did not increase in the sipuleucel-T group. However, the available data suggested, but did not confirm, an increase in stroke risk; this risk is being evaluated in a postmarketing study. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have nonmetastatic, androgen-dependent prostate cancer who receive sipuleucel-T (Provenge), the evidence includes an RCT. Relevant outcomes are overall survival, disease-specific survival, change in disease status, and treatment-related morbidity. The RCT did not find a statistically significant difference between sipuleucel-T and a control in time to biochemical failure. The RCT was not designed to evaluate the impact of sipuleucel-T on
mortality. The evidence is insufficient to determine the effects of the technology on health outcomes.

Supplemental Information
Practice Guidelines and Position Statements

American Urological Association
The American Urological Association (2018) amended their 2013 guidelines on castration-resistant prostate cancer. Table 3 provides the guideline statements on sipuleucel-T.

Table 3. Guidelines on Treatment of Castration-Resistant Prostate Cancer

<table>
<thead>
<tr>
<th>Guideline</th>
<th>SOE</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Clinicians should offer abiraterone plus prednisone, enzalutamide, docetaxel, or sipuleucel-T to patients with asymptomatic or minimally symptomatic mCRPC with good performance status and no prior docetaxel chemotherapy.”</td>
<td>Standard</td>
<td>A (abiraterone plus prednisone and enzalutamide)</td>
</tr>
<tr>
<td>“Clinicians should not offer treatment with either estramustine or sipuleucel-T to patients with symptomatic, mCRPC with good performance status and no prior docetaxel chemotherapy.”</td>
<td>Recommendation</td>
<td>C</td>
</tr>
<tr>
<td>“Clinicians should not offer sipuleucel-T to patients with symptomatic, mCRPC with poor performance status and no prior docetaxel chemotherapy.”</td>
<td>Recommendation</td>
<td>C</td>
</tr>
</tbody>
</table>

LOE: level of evidence; mCRPC: metastatic castration-resistant prostate cancer; SOE: strength of evidence.

National Comprehensive Cancer Network
Current National Comprehensive Cancer Network guidelines for prostate cancer (v.3.2018) recommend sipuleucel-T as a category 1 treatment for patients with metastatic castration-recurrent prostate cancer, symptomatic or minimally symptomatic; Eastern Cooperative Oncology Group Performance Status 0 or 1; no liver metastasis; and life expectancy greater than 6 months. Sipuleucel-T also is recommended for second-line treatment of symptomatic patients with metastatic castration-recurrent prostate cancer who fail chemotherapy and otherwise meet criteria for treatment with sipuleucel-T (category 2A recommendation).

American Society of Clinical Oncology and Cancer Care Ontario
The American Society of Clinical Oncology (2014) issued an evidence-based guideline on systemic therapy for men with metastatic castration-resistant prostate cancer. The guidelines included a weak recommendation that “sipuleucel-T may be offered to men who are asymptomatic or minimally symptomatic (benefit: moderate; harm: low; evidence strength: moderate).” The 2017 guidelines on second-line hormonal therapy for men with chemotherapy-naive, castration-resistant prostate cancer gives a provisional recommendation of sipuleucel-T as an option.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
The Centers for Medicare & Medicaid Services released a national coverage determination in 2011 approving sipuleucel-T for the treatment of asymptomatic or minimally symptomatic castration-resistant prostate cancer. Coverage for off-label indications was left to the discretion of local Medicare administrative contractors.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this policy are listed in Table 4.
Table 4. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01807065</td>
<td>Randomized Phase II Trial of Sipuleucel T Immunotherapy Preceded by Sensitizing Radiation Therapy and Sipuleucel-T Alone in Patients With Castrate Resistant Metastatic Prostate Cancer</td>
<td>50</td>
<td>Jan 2019</td>
</tr>
<tr>
<td>NCT01804465a</td>
<td>A Randomized Phase 2 Trial of Combining Sipuleucel-T With Immediate vs. Delayed CTLA-4 Blockade for Prostate Cancer</td>
<td>54</td>
<td>Dec 2019</td>
</tr>
<tr>
<td>NCT01560923</td>
<td>A Randomized, Double-Blind Phase II Study of Sipuleucel-T (Provenge®) Followed by Indoximod or Placebo in the Treatment of Patients With Asymptomatic or Minimally Symptomatic Metastatic Castration Resistant Prostate Cancer</td>
<td>47</td>
<td>Nov 2020</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01306890a</td>
<td>A Registry of Sipuleucel-T Therapy in Men With Advanced Prostate Cancer (PROCEED)</td>
<td>1973</td>
<td>Jan 2017 (completed)</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.
a Denotes industry-sponsored or cosponsored trial.

References

Documentation for Clinical Review

Please provide the following documentation (if/when requested):
- History and physical and/or consultation notes including:
 - Previous treatment and response

Post Service
- Procedure report(s)

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy. Inclusion or exclusion of codes does not constitute or imply member coverage or provider reimbursement.

MN/IE

The following services may be considered medically necessary in certain instances and investigational in others. Services may be considered medically necessary when policy criteria are met. Services may be considered investigational when the policy criteria are not met or
when the code describes application of a product in the position statement that is investigational.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT®</td>
<td>36511</td>
<td>Therapeutic apheresis for white blood cells</td>
</tr>
<tr>
<td></td>
<td>96365</td>
<td>Intravenous infusion, for therapy, prophylaxis, or diagnosis (specify substance or drug); initial, up to 1 hour</td>
</tr>
<tr>
<td>HCPCS</td>
<td>Q2043</td>
<td>Sipuleucel-T, minimum of 50 million autologous cd5+ cells activated with PAP-GM-CSF, including leukapheresis and all other preparatory procedures, per infusion</td>
</tr>
<tr>
<td>ICD-10 Procedure</td>
<td>30233Q0</td>
<td>Transfusion of Autologous White Cells into Peripheral Vein, Percutaneous Approach</td>
</tr>
<tr>
<td></td>
<td>30243Q0</td>
<td>Transfusion of Autologous White Cells into Central Vein, Percutaneous Approach</td>
</tr>
<tr>
<td></td>
<td>6A550Z1</td>
<td>Pheresis of Leukocytes, Single</td>
</tr>
<tr>
<td></td>
<td>6A551Z1</td>
<td>Pheresis of Leukocytes, Multiple</td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/07/2011</td>
<td>BCBSA Medical Policy adoption</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>04/05/2011</td>
<td>Administrative Review</td>
<td>Administrative Review</td>
</tr>
<tr>
<td>09/30/2014</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>02/01/2017</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>09/01/2017</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>09/01/2018</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
</tbody>
</table>

Definitions of Decision Determinations

Medically Necessary: A treatment, procedure, or drug is medically necessary only when it has been established as safe and effective for the particular symptoms or diagnosis, is not investigational or experimental, is not being provided primarily for the convenience of the patient or the provider, and is provided at the most appropriate level to treat the condition.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member’s health plan coverage is still in effect. Blue Shield reserves the right to revoke an
authorization prior to services being rendered based on cancellation of the member's eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department. Please call (800) 541-6652 or visit the provider portal at www.blueshieldca.com/provider.

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.