Policy Statement

Automated ambulatory blood pressure monitoring (ABPM) over a 24-hour period may be considered medically necessary for patients with elevated office blood pressure (BP) when performed one time to differentiate between “white coat hypertension” and true hypertension, and when both of the following conditions are met (see Policy Guidelines section for considerations in pediatric patients):

- Office BP elevation is in the mild-to-moderate range (less than 180/110 mm Hg), not requiring immediate treatment with medications
- There is an absence of hypertensive end-organ damage on physical examination and laboratory testing

All other uses of ambulatory blood pressure monitoring for patients with elevated office BP are considered investigational, for all other uses including but not limited to:

- Repeated testing in patients with persistently elevated office BP
- Monitoring of treatment effectiveness

Policy Guidelines

For pediatric patients, the principles of ambulatory blood pressure monitoring used to confirm a diagnosis of hypertension are the same as in adults, with the following special considerations (Flynn et al, 2014):

- A device should be selected that is appropriate for use in pediatric patients, including the use of a cuff size appropriate to the child’s size
- Threshold levels for the diagnosis of hypertension should be based on pediatric normative data, which use gender- and height-specific values derived from large pediatric populations
- Recommendations from the American Heart Association (AHA) concerning the classification of hypertension in pediatric patients using clinic and ambulatory blood pressure, which are given in Table PG1

<table>
<thead>
<tr>
<th>Classification</th>
<th>Clinic BP</th>
<th>Mean Ambulatory SBP</th>
<th>SBP Loada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal BP</td>
<td><95th percentile</td>
<td><95th percentile</td>
<td><25%</td>
</tr>
<tr>
<td>White coat hypertension</td>
<td>>95th percentile</td>
<td><95th percentile</td>
<td><25%</td>
</tr>
<tr>
<td>Masked hypertension</td>
<td><95th percentile</td>
<td>>95th percentile</td>
<td>>25%</td>
</tr>
<tr>
<td>Prehypertension</td>
<td>>95th percentile</td>
<td><95th percentile</td>
<td>25%-50%</td>
</tr>
<tr>
<td>Ambulatory hypertension</td>
<td>>95th percentile</td>
<td>>95th percentile</td>
<td>25%-50%</td>
</tr>
<tr>
<td>Severe ambulatory hypertension</td>
<td>>95th percentile</td>
<td>>95th percentile</td>
<td>>50%</td>
</tr>
</tbody>
</table>

Adapted from Flynn et al (2014).
BP: Blood Pressure; SBP: Systolic Blood Pressure

a The percentage of SBP readings >95th percentile for gender and height

Coding

A series of CPT codes describes the various steps in ambulatory blood pressure monitoring.

Recording:

- 93786: Ambulatory blood pressure monitoring, utilizing a system such as magnetic tape and/or computer disk, for 24 hours or longer; recording only
1.01.02 Automated Ambulatory Blood Pressure Monitoring for Diagnosis of Hypertension in Patients with Elevated Office Blood Pressure

Page 2 of 14

Scanning analysis:
- **93788**: Ambulatory blood pressure monitoring, utilizing a system such as magnetic tape and/or computer disk, for 24 hours or longer; scanning analysis with report

Physician review and report:
- **93790**: Ambulatory blood pressure monitoring, utilizing a system such as magnetic tape and/or computer disk, for 24 hours or longer; review with interpretation and report

These separate CPT codes may be used if different individuals perform the individual tasks. However, if 1 physician performs all of the above services, CPT code 93784 may be used. Code 93784 is a comprehensive code describing recording, scanning analysis, and interpretation and report.
- **93784**: Ambulatory blood pressure monitoring, utilizing a system such as magnetic tape and/or computer disk, for 24 hours or longer; including recording, scanning analysis, interpretation and report

Description

Ambulatory blood pressure (BP) monitors (24-hour sphygmomanometers) are portable devices that continually record BP while the patient is involved in daily activities. There are various types of ambulatory monitors; this evidence review addresses fully automated monitors, which inflate and record BP at preprogrammed intervals. Ambulatory blood pressure monitoring (ABPM) has the potential to improve the accuracy of diagnosing hypertension and thus improve the appropriateness of medication treatment.

Related Policies

- N/A

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

Regulatory Status

Many ambulatory blood pressure monitors have been cleared for marketing by the U.S. Food and Drug Administration through the 510(k) process. As an example of a Food and Drug Administration indication, the Welch Allyn Ambulatory Blood Pressure Monitoring 6100 is indicated “as an aid or adjunct to diagnosis and treatment when it is necessary to measure adult or pediatric patients’ systolic and diastolic blood pressures over an extended period of time.”

1. Federal Employee Program.
Rationale

Background
Typically done over a 24-hour period with a fully automated device, ambulatory blood pressure monitoring (ABPM) provides more detailed blood pressure (BP) information than readings typically obtained during office visits. The greater number of readings with ABPM ameliorates the variability of single BP measurements and is more representative of the circadian rhythm of BP.

ABPM has a number of potential applications. One of the most common is evaluating suspected white coat hypertension, which is defined as an elevated office BP with normal BP readings outside the physician’s office. The etiology of white coat hypertension is poorly understood but may be related to an “alerting” or anxiety reaction associated with visiting the physician’s office.

In assessing patients with elevated office BP, ABPM is often intended to identify those with normal ambulatory readings who do not have sustained hypertension. Because this group of patients would otherwise be treated based on office BP readings alone, ABPM could improve outcomes by allowing these patients to avoid unnecessary treatment. However, this assumes patients with white coat hypertension are not at increased risk for cardiovascular events and would not benefit from antihypertensive treatment.

Other uses of ABPM include monitoring patients with established hypertension under treatment; evaluating refractory or resistant BP; evaluating whether symptoms such as lightheadedness correspond with BP changes; evaluating night-time BP; examining diurnal patterns of BP; and other potential uses.

This evidence review does not directly address other uses of ABPM, including its use for the evaluation of “masked” hypertension. Masked hypertension refers to normal BP readings in the office and elevated BP readings outside of the office. This phenomenon has recently received greater attention, with estimates that up to 10% to 20% of individuals may exhibit this pattern.

Literature Review
This review was informed by a Blue Cross Blue Shield Association Technology Evaluation Center (TEC) Assessment (1999) and a subsequent 2001 reanalysis of this report conducted by the Centers for Medicare & Medicaid Services.

Evidence reviews assess whether a medical test is clinically useful. A useful test provides information to make a clinical management decision that improves the net health outcome. That is, the balance of benefits and harms is better when the test is used to manage the condition than when another test or no test is used to manage the condition.

The first step in assessing a medical test is to formulate the clinical context and purpose of the test. The test must be technically reliable, clinically valid, and clinically useful for that purpose. Evidence reviews assess the evidence on whether a test is clinically valid and clinically useful. Technical reliability is outside the scope of these reviews, and credible information on technical reliability is available from other sources.

24-Hour Automated Ambulatory Blood Pressure Monitoring
The focus of the current review is on the use of ambulatory blood pressure monitoring (ABPM) in previously untreated patients with elevated office blood pressure (BP). In this situation, ABPM is primarily intended to evaluate white coat hypertension (WCH), or “isolated clinic hypertension.” This entity is defined as an elevated office BP with normal BP readings outside the physician’s office. It is diagnosed by obtaining multiple out-of-office BP measurements and comparing them with office readings.
Clinical Context and Test Purpose
The purpose of 24-hour automated ABPM in patients who have elevated office BP is to confirm a diagnosis of hypertension and to initiate an appropriate treatment regimen.

The question addressed in this evidence review is: Does use of 24-hour automated ABPM in patients with elevated office BP confirm a diagnosis of hypertension so that appropriate treatment can be initiated or rule out hypertension so inappropriate treatment is not initiated?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is individuals with elevated office BP.

Interventions
The test being considered is 24-hour automated ABPM.

Comparators
The following tests are currently being used: office BP measurement and home BP measurement.

Outcomes
The general outcomes of interest are accurate blood pressure readings so to confirm a diagnosis of hypertension and to initiate appropriate treatment for those with elevated BP readings and to rule out hypertension to avoid inappropriate treatment and adverse events of therapy.

Timing
24-hour automated ABPM may be used when there is persistent unexplained variability in serial elevated BP measurements over a 1-3 month period.

Setting
The appropriate setting, after initial setup, is the home or workplace.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Reference Values for ABPM Monitoring
Establishing reference values for ABPM is integral to providing guidelines for “normal” and “abnormal” ABPM readings. Studies that have compared ABPM measurements with office measurement have consistently revealed lower ABPM values. Therefore, it is not possible to use reference values for office BP to evaluate the results of ABPM.

Reference values for ABPM have been derived by several methods: (1) estimates of population-based ABPM results to define the range and distribution of ABPM values; (2) direct comparisons of average ABPM values and office BP to determine the level of ABPM that corresponds to an office BP of 140/90 mm Hg; and (3) correlations of ABPM results with cardiovascular outcomes to determine ABPM levels at which the risk for cardiovascular events increases, or is similar to the risk associated with an office BP of 140/90 mm Hg.

Although specific recommendations vary slightly, current thresholds for defining a normal ABPM are 24-hour average BP of 130/80 mm Hg and daytime average BP of 135/85 mm Hg. A 1999 ABPM consensus conference task force considered data on the statistical distribution of ABPM, correlation with office BP, and correlation with cardiovascular outcomes in deriving recommendations for reference values for ABPM. Their recommendations are summarized in...
1.01.02 Automated Ambulatory Blood Pressure Monitoring for Diagnosis of Hypertension in Patients with Elevated Office Blood Pressure

Page 5 of 14

Table 1. Subsequent studies have identified racial and ethnic variations in ABPM results, but the impact of these differences on clinical management may be minimal.

Table 1. Adult ABPM Thresholds

<table>
<thead>
<tr>
<th>ABPM Measure</th>
<th>95th Percentile</th>
<th>Normotension, mm Hg</th>
<th>Hypertension, mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-hour average, mm Hg</td>
<td>132/82</td>
<td>≤130/80</td>
<td>>135/85</td>
</tr>
<tr>
<td>Daytime average, mm Hg</td>
<td>138/87</td>
<td>≤135/85</td>
<td>>140/90</td>
</tr>
<tr>
<td>Nighttime average, mm Hg</td>
<td>123/74</td>
<td>≤120/70</td>
<td>>125/75</td>
</tr>
</tbody>
</table>

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Adults
Many prospective cohort studies have compared ABPM with office BP in predicting cardiovascular events. Although results of these studies are not entirely consistent, most have reported that ABPM has greater predictive ability for cardiovascular events than office BP measurement. A summary of relevant systematic reviews and meta-analyses of these studies follows.

Hansen et al (2007) conducted a patient-level meta-analysis using data from 4 populations in Belgium, Denmark, Japan, and Sweden (total N=7030 patients). The predictive values of ABPM and in-clinic BP for fatal and nonfatal cardiovascular events were reported. Both ABPM and office BP were predictors of outcomes in univariate and partially adjusted multivariate models. In the fully adjusted model, ABPM remained a significant predictor of outcomes while office BP did not.

Conen and Bamberg (2008) conducted a meta-analysis of 20 cohort studies that evaluated the correlation between ABPM and outcomes, controlling for office BP in the analysis. Reviewers reported that ABPM was a strong predictor of cardiovascular outcomes and that controlling for office BP had little effect on risk estimates. These results support the hypothesis that risk information obtained from ABPM is independent of that obtained from office BP.

A systematic review by Piper et al (2015), conducted for the U.S. Preventive Services Task Force, identified 7 studies of diagnostic accuracy were identified. Four were rated high quality and 3 moderate quality. Four studies directly compared ABPM with automated office BP readings. Using ABPM as the reference standard, the sensitivity of office BP measurement for the diagnosis of hypertension ranged from 51% to 91%, specificity ranged from 97% to 98%, and the positive predictive value ranged from 76% to 84%.

Numerous other studies have directly compared ABPM with office BP and/or home self-measured BP. Hodgkinson et al (2011) performed a systematic review of studies that compared ABPM with home or office BP and used defined thresholds to determine the accuracy of diagnosis of hypertension. Of 10 studies identified, 7 compared ABPM with office BP measurements and 3 compared ABPM with home self-measurement. Using a 24-hour ABPM threshold of 135/85 mm Hg, clinic BP measurements had a sensitivity of 75% (95% confidence interval [CI], 61% to 85%) and a specificity of 75% (95% CI, 48% to 90%). Home BP self-measurement had a sensitivity of 86% (95% CI, 78% to 91%) and a specificity of 62% (95% CI, 48% to 75%). The accuracy of office and home BP was considered inadequate for use as a single diagnostic test for hypertension, and it was hypothesized that the use of office and/or home measurements might lead to substantial overdiagnosis and overtreatment.

In a similar systematic review, Stergiou and Bliziotis (2011) compared the accuracy of ABPM with home BP measurement for the diagnosis of hypertension. Sixteen studies were selected. The
sensitivity of home BP measurement, compared with ABPM, ranged from 36% to 100% (median, 74%). The specificity ranged from 44% to 96% (median, 84%). Reviewers also reported the diagnostic agreement between the 2 methods of BP measurement, as assessed using the κ statistic. Kappa could be calculated in 11 studies; the range of scores was 0.37 to 0.73 (median, 0.46). This κ level indicates moderate agreement between ABPM and home monitoring in the diagnosis of hypertension.

Children and Adolescents
ABPM has been used in children and adolescents for similar purposes as in adults, including use in children and adolescents with elevated office BP to distinguish true hypertension from WCH. The evidence base for children and adolescents is smaller but generally consistent with evidence in adults. A representative sample of studies identified follows.

Nomative values for pediatric patients have been established by large population-based studies of children and adolescents. Elevated readings are defined as values greater than the 95th percentile for sex, age, and height. These studies have also established that patterns of ambulatory BP in children differ from those in adults. In children, ambulatory BP is generally higher than the corresponding office BP, in contrast to adult ambulatory BP readings that are on average lower than office BP. This pattern is more pronounced in younger children, and the difference progressively declines with age. Guidelines for classification of hypertension in children and adolescents were published by the American Heart Association (2008).

In a European study reported by Valent-Moric et al (2012), 139 children and adolescents between the ages of 4 and 19 years with elevated office BP were evaluated by ABPM. Thirty-two (23.0%) of 139 participants had WCH, as evidenced by a normal 24-hour ABPM result. Of patients with true hypertension, 21 (19.6%) of 107 had evidence of target organ damage, compared with none of the patients with WCH. In a similar study (2000) from the United States, Sorof and Portman (2000) reported on 67 otherwise healthy children who underwent ABPM, 51 of whom had an elevated office BP. Using 3 definitions of WCH at varying BP cutoffs, WCH was identified in 22% to 53% of children with elevated office BP. In a 2002 study from Japan, Matsuoka et al (2002) assessed 206 children and adolescents between the ages of 6 and 25 years who underwent ABPM, 70 of whom had elevated office BP. Among the 70 patients with elevated office BP, 33 (47%) had WCH, as defined by a normal ABPM result. A "white coat" effect of 10 mm Hg or more was reported in 50% of patients with office hypertension and 25% of patients with normal office BP.

Section Summary: Clinically Valid
For adults, studies comparing home BP monitoring to office monitoring with ABPM as the criterion standard have reported that the sensitivity and specificity of alternative methods of diagnosing hypertension are suboptimal. For children and adolescents, reference values for normal and abnormal ABPM results, derived from epidemiologic research, have been used to differentiate WCH from true hypertension in pediatric patients.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.
Direct evidence of the efficacy of ABPM for improving outcomes in this the outpatient setting would be obtained from randomized controlled trials comparing outcomes for (1) patients diagnosed and treated based on conventional BP measurements alone with (2) patients additionally undergoing ABPM used to guide therapy (e.g., withholding or randomizing treatment among those with WCH). This notion parallels the statement from the U.S. National High Blood Pressure Education Program working group on ABPM in 1992: “Ideally, de novo longitudinal studies should be undertaken to determine which ambulatory profiles are associated with increased cardiovascular risk and what transformations of ambulatory profiles induced by antihypertensive therapy are associated with reductions in risk.” Randomized controlled trials using ABPM to monitor treatment response but not to diagnose hypertension have been conducted. However, a subgroup analysis of the Systolic Hypertension in Europe (Syst-Eur) trial (2000) addressed this question indirectly.

The Syst-Eur trial, a large, multicenter randomized controlled trial (2000), enrolled patients 60 years of age or older with isolated systolic hypertension and randomized them to antihypertensive treatment or placebo. A subgroup analysis evaluated 695 patients (from the total Syst-Eur sample of 4695 patients) who underwent 24-hour ABPM in addition to the usual study protocol. Conventional BP was defined from the mean of 6 baseline clinic BP readings (2 readings obtained with the patient seated at each of 3 baseline visits at least 1 month apart). Participants were classified into 3 groups based on ABPM readings: nonsustained hypertension (i.e., WCH), mild-sustained hypertension, and moderate-sustained hypertension. Reduction in cardiovascular events was compared between active and placebo groups among patients in each category. For patients with nonsustained hypertension, there was a numerically lower rate of adverse outcomes in the treated group for stroke (0 vs 2, \(p = 0.16 \)) and cardiovascular events (2 vs 6, \(p = 0.17 \)), ie, differences were not statistically significant. There was a significant reduction in events with treatment only among patients with moderate-sustained hypertension.

Staessen et al (1999) analyzed follow-up data (median follow-up, 4.4 years) from an apparently overlapping subset of 808 older individuals from the Syst-Eur trial who had isolated systolic hypertension measured conventionally (i.e., systolic BP, 160-219 mm Hg; diastolic BP, <95 mm Hg) and BP by ABPM. Average systolic BP and diastolic BP were higher with conventional measurements (by 21.9 mm and 1.9 mm Hg, respectively). ABPM was significantly associated with cardiovascular end points, even when conventional BP was taken into account.

Chain of Evidence

Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

Well-designed, prospective cohort studies could provide indirect evidence on the potential benefit of treating patients with WCH. Ideally, prospective studies would compare outcomes of untreated patients with WCH to normotensive and sustained hypertensive patients (the latter being treated). Studies would have to control for important potential confounders such as adequacy of BP control, age, sex, smoking status, lipid levels, and diabetes. Well-designed and conducted prospective cohort studies finding that untreated WCH patients have a cardiovascular event risk similar to that of normotensive patients would imply these patients accrue little treatment benefit. In contrast, if the cardiovascular risk for patients with WCH is increased, then there is a potential benefit to treatment.

The systematic review by Piper et al (2015), performed for the U.S. Preventive Services Task Force, identified 11 cohort studies that compared ABPM with alternative methods for predicting cardiovascular events. Six studies were rated good quality and 5 were rated fair quality. There was a significant correlation between ABPM measures and outcomes in most studies. For each 10-mm increase in the average 24-hour systolic BP, the hazard ratio for fatal and nonfatal cardiovascular events ranged from 1.11 to 1.42, and the hazard ratio for stroke ranged from 1.28 to 1.40.
Section Summary: Clinically Useful
Data from large prospective cohort studies have established that ABPM correlates more strongly with cardiovascular outcomes than other methods of BP measurement and that WCH, as defined by ABPM, is associated with an intermediate risk of cardiovascular outcomes compared with normotensive and hypertensive patients.

Summary of Evidence
For individuals with elevated office BP who receive 24-hour automated ABPM, the evidence includes randomized controlled trials, cohort studies, and studies of diagnostic accuracy. Relevant outcomes are test accuracy, other test performance measures, morbid events, and medication use. Data from large prospective cohort studies have established that ABPM correlates more strongly with cardiovascular outcomes than with other methods of BP measurement. Compared directly with other methods, ABPM performed over a 24-hour period has higher sensitivity, specificity, and predictive value for the diagnosis of hypertension than office or home BP measurements. Substantial percentages of patients with elevated office BP have normal BP on ABPM (white coat hypertension). Prospective cohort studies have reported that patients with white coat hypertension have an intermediate risk of cardiovascular outcomes compared with normotensive and hypertensive patients. The benefit of medication treatment in these patients is uncertain, and they are at risk of overdiagnosis and overtreatment based on office BP measurements alone. Use of ABPM in these patients will improve outcomes by eliminating unnecessary pharmacologic treatment and avoiding adverse events in patients not expected to benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Supplemental Information
Practice Guidelines and Position Statements

American Academy of Pediatrics
The American Academy of Pediatrics published clinical guidelines for the screening and management of high blood pressure (BP) in children and adolescents in 2017.26 Table 2 lists recommendations made.

Table 2. Guidelines on Screening and Management of High BP in Children and Adolescents

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>LOE</th>
<th>SOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>“ABPM should be performed for confirmation of HTN in children and adolescents with office BP measurements in the elevated BP category for 1 year or more or with stage 1 HTN over 3 clinic visits.”</td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>“Routine performance of ABPM should be strongly considered in children and adolescents with high-risk conditions to assess HTN severity and determine if abnormal circadian BP patterns are present, which may indicate increased risk for target organ damage.”</td>
<td>B</td>
<td>Moderate</td>
</tr>
<tr>
<td>“ABPM should be performed by using a standardized approach with monitors that have been validated in a pediatric population, and studies should be interpreted by using pediatric normative data.”</td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>“Children and adolescents with suspected WCH should undergo ABPM.”</td>
<td>B</td>
<td>Strong</td>
</tr>
</tbody>
</table>

American College of Cardiology et al
The American College of Cardiology, with 10 other medical specialty societies, published guidelines on the prevention, detection, evaluation, and management of high BP in adults in 2017.27 Table 3 lists recommendations made.
Table 3. Guidelines on Prevention, Detection, Evaluation, and Management of High BP in Adults

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>“In adults with an untreated SBP greater than 130 mm Hg but less than 160 mm Hg or DBP greater than 80 mm Hg but less than 100 mm Hg, it is reasonable to screen for the presence of white coat hypertension by using either daytime ABPM or HBPM before diagnosis of hypertension”</td>
<td>Ila</td>
<td>B-NR</td>
</tr>
<tr>
<td>“In adults with white coat hypertension, periodic monitoring with either ABPM or HBPM is reasonable to detect transition to sustained hypertension”</td>
<td>Ila</td>
<td>C-LD</td>
</tr>
<tr>
<td>“In adults being treated for hypertension with office BP readings not at goal and HBPM readings suggestive of a significant white coat effect; confirmation by ABPM can be useful”</td>
<td>Ila</td>
<td>C-LD</td>
</tr>
<tr>
<td>“In adults with untreated office BPs that are consistently between 120 mm Hg and 129 mm Hg for SBP or between 75 mm Hg and 79 mm Hg for DBP, screening for masked hypertension with HBPM (or ABPM) is reasonable”</td>
<td>Ila</td>
<td>B-NR</td>
</tr>
<tr>
<td>“In adults on multiple-drug therapies for hypertension and office BPs within 10 mm Hg above goal, it may be reasonable to screen for white coat effect with HBPM (or ABPM)”</td>
<td>IIb</td>
<td>C-LD</td>
</tr>
</tbody>
</table>

American Heart Association
The American Heart Association published updated recommendations on routine ABPM in 2014, which included the following:

- “To confirm the diagnosis of hypertension in a patient with hypertension according to casual BP measurements
 - Determine whether sustained hypertension or WCH [white coat hypertension] exists.
- To evaluate for the presence of masked hypertension when there is a clinical suspicion of hypertension but normal or prehypertensive casual measurements
- To assess BP patterns in high-risk patients
 - Assess for abnormal circadian variation in BP, such as blunted dipping or isolated sleep hypertension in patients with diabetes mellitus, CKD [chronic kidney disease], solid organ transplants, and severe obesity with or without sleep-disordered breathing.
 - Assess the severity and persistence of BP elevation in patients at high risk for hypertensive target-organ damage.
- To evaluate effectiveness of drug therapy for hypertension
 - Confirm BP control in treated patients, especially those with secondary forms of hypertension.
 - Evaluate for apparent drug-resistant hypertension.
 - Determine whether symptoms can be attributed to drug-related hypotension.”

National Institute for Health and Care Excellence
The National Institute for Health and Care Excellence updated its 2011 guidance on hypertension in 2016. For diagnosing hypertension, the Institute made the following recommendations for ambulatory blood pressure monitoring (ABPM):

- “If the clinic blood pressure is 140/90 mmHg or higher, offer ambulatory blood pressure monitoring (ABPM) to confirm the diagnosis of hypertension.
- When using ABPM to confirm a diagnosis of hypertension, ensure that at least two measurements per hour are taken during the person’s usual waking hours. Use the average of at least 14 measurements taken during usual waking hours to confirm a diagnosis of hypertension.”

U.S. Preventive Services Task Force Recommendations
The U.S. Preventive Services Task Force (USPSTF) published recommendations in 2015 on screening for hypertension. The following recommendation was given a grade A rating:
1.01.02 Automated Ambulatory Blood Pressure Monitoring for Diagnosis of Hypertension in Patients with Elevated Office Blood Pressure

Page 10 of 14

“The USPSTF recommends screening for high blood pressure in adults aged 18 years or older. The USPSTF recommends obtaining measurements outside of the clinical setting for diagnostic confirmation before starting treatment.”

The document further elaborated on the choice of office measurements, with the following statement on ABPM:

“The USPSTF found convincing evidence that ABPM is the best method for diagnosing hypertension. Although the criteria for establishing hypertension varied across studies, there was significant discordance between the office diagnosis of hypertension and 12- and 24-hour average blood pressures using ABPM, with significantly fewer patients requiring treatment based on ABPM. Elevated ambulatory systolic blood pressure was consistently and significantly associated with increased risk for fatal and nonfatal stroke and cardiovascular events, independent of office blood pressure. For these reasons, the USPSTF recommends ABPM as the reference standard for confirming the diagnosis of hypertension.”

Medicare National Coverage

Medicare considers ABPM eligible for coverage as follows:

“The USPSTF found convincing evidence that ABPM is the best method for diagnosing hypertension. Although the criteria for establishing hypertension varied across studies, there was significant discordance between the office diagnosis of hypertension and 12- and 24-hour average blood pressures using ABPM, with significantly fewer patients requiring treatment based on ABPM. Elevated ambulatory systolic blood pressure was consistently and significantly associated with increased risk for fatal and nonfatal stroke and cardiovascular events, independent of office blood pressure. For these reasons, the USPSTF recommends ABPM as the reference standard for confirming the diagnosis of hypertension.”

Medicare National Coverage

Medicare considers ABPM eligible for coverage as follows:

“Suspected white coat hypertension is defined as

1. Office blood pressure > 140/90 mm Hg on at least three separate clinic/office visits with two separate measurements made at each visit;
2. At least two documented blood pressure measurements taken outside the office which are <140/90 mm Hg; and
3. No evidence of end-organ damage.”

Ongoing and Unpublished Clinical Trials

Some currently unpublished trials that might influence this review are listed in Table 4.

Table 4. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT02121041</td>
<td>Comparative Effectiveness of Ambulatory Blood Pressure Monitoring vs Usual Care for Diagnosing and Managing Hypertension: A Pilot Study</td>
<td>30</td>
<td>Jun 2016 (completed)</td>
</tr>
</tbody>
</table>

NCT: National Clinical Trial.

References

6. Head GA, Mihailidou AS, Duggan KA, Et Al. Definition Of Ambulatory Blood Pressure Targets For Diagnosis And Treatment Of Hypertension In Relation To Clinic Blood Pressure: Prospective Cohort Study. BMJ. Apr 14 2010;340:C1104. PMID 20392760

Documentation for Clinical Review

Please provide the following documentation (if/when requested):

- History and physical and/or consultation report including:
 - Documentation reflecting blood pressure elevation
 - Documentation of absence of end-organ damage
 - Laboratory testing results
 - Reason for 24 hour automated ambulatory blood pressure monitoring

Post Service

- Results/reports of tests performed
1.01.02 Automated Ambulatory Blood Pressure Monitoring for Diagnosis of Hypertension in Patients with Elevated Office Blood Pressure

Page 13 of 14

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy. Inclusion or exclusion of codes does not constitute or imply member coverage or provider reimbursement.

MN/IE

The following services may be considered medically necessary in certain instances and investigational in others. Services may be considered medically necessary when policy criteria are met. Services may be considered investigational when the policy criteria are not met or when the code describes application of a product in the position statement that is investigational.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT®</td>
<td>93784</td>
<td>Ambulatory blood pressure monitoring, utilizing a system such as magnetic tape and/or computer disk, for 24 hours or longer; including recording, scanning analysis, interpretation and report</td>
</tr>
<tr>
<td></td>
<td>93786</td>
<td>Ambulatory blood pressure monitoring, utilizing a system such as magnetic tape and/or computer disk, for 24 hours or longer; recording only</td>
</tr>
<tr>
<td></td>
<td>93788</td>
<td>Ambulatory blood pressure monitoring, utilizing a system such as magnetic tape and/or computer disk, for 24 hours or longer; scanning analysis with report</td>
</tr>
<tr>
<td></td>
<td>93790</td>
<td>Ambulatory blood pressure monitoring, utilizing a system such as magnetic tape and/or computer disk, for 24 hours or longer; review with interpretation and report</td>
</tr>
<tr>
<td>HCPCS</td>
<td>A4670</td>
<td>Automatic blood pressure monitor</td>
</tr>
<tr>
<td>ICD-10 Procedure</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/18/1973</td>
<td>New Policy Adoption</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>03/20/1999</td>
<td>Policy Review</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>04/01/2001</td>
<td>Administrative Review</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>10/01/2004</td>
<td>Policy Revision</td>
<td>Administrative Review</td>
</tr>
<tr>
<td>03/01/2005</td>
<td>Administrative Review</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>07/02/2007</td>
<td>BCBSA Medical Policy adoption</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>10/31/2012</td>
<td>Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>01/04/2013</td>
<td>Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>01/11/2013</td>
<td>Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>07/14/2014</td>
<td>Policy title change from Automated Ambulatory Blood Pressure Monitoring Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>05/29/2015</td>
<td>Coding Update Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>Effective Date</td>
<td>Action</td>
<td>Reason</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>09/01/2016</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td></td>
<td>Policy changed from Automated Ambulatory Blood Pressure Monitoring for the Diagnosis of Hypertension in Patients With Elevated Office Blood Pressure</td>
<td></td>
</tr>
<tr>
<td>08/01/2017</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>08/01/2018</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
</tbody>
</table>

Definitions of Decision Determinations

Medically Necessary: A treatment, procedure, or drug is medically necessary only when it has been established as safe and effective for the particular symptoms or diagnosis, is not investigational or experimental, is not being provided primarily for the convenience of the patient or the provider, and is provided at the most appropriate level to treat the condition.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member's health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member's eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department. Please call (800) 541-6652 or visit the provider portal at www.blueshieldca.com/provider.

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.