Policy Statement

I. Intensity-modulated radiotherapy (IMRT) using a hypofractionated regimen (up to 16 treatments and up to 8 more if a boost is needed) may be considered medically necessary as a technique to deliver whole-breast irradiation in individuals receiving treatment when all of the following conditions are met:
 A. Left-sided breast cancer
 B. Prior breast-conserving surgery
 C. Documentation of both of the following:
 1. Significant cardiac radiation exposure cannot be avoided using alternative radiotherapy
 2. IMRT dosimetry demonstrates significantly reduces cardiac target volume radiation exposure as documented by both of the following:
 a. With 3D-CRT, the target volume coverage results in cardiac radiation exposure that is expected to be greater than or equal to 25 gray (Gy) to 10 cm³ or more of the heart (V25 ≥10 cm³), despite the use of a complex positioning device (e.g., Vac-Lok™)
 b. With IMRT, there is a reduction in the absolute heart volume receiving 25 Gy or more by at least 20% (e.g., volume predicted to receive 25 Gy by 3D-CRT is 20 cm³, and the volume predicted by IMRT is ≤16 cm³)

II. IMRT using conventional fractionation may be considered medically necessary if there are contraindications to hypofractionation and documentation of the contraindication to hypofractionation is provided.

III. IMRT may be considered medically necessary when all of the following conditions are met:
 A. Individual has large breasts (> 500 cc)
 B. 3-dimensional conformal radiotherapy dosimetry results in hot spots (focal regions with dose variation greater than 10% of target)
 C. Hot spots can be avoided with IMRT

IV. IMRT may be considered medically necessary as a technique to deliver radiotherapy in individuals with lung cancer when all of the following conditions are met:
 A. Radiotherapy is being given with curative intent
 B. Three-dimensional (3-D) conformal radiotherapy will expose greater than 35% of normal lung tissue to more than a 20-gray (Gy) dose-volume (V20)
 C. IMRT dosimetry demonstrates a reduction in the V20 to at least 10% below the V20 that is achieved with the 3-dimensional plan (e.g., from 40% down to 30% or lower)

V. IMRT is considered investigational as a technique to deliver radiotherapy in individuals receiving palliative treatment for lung cancer.

VI. Intensity modulated radiation therapy to breast or lung cancers may be considered medically necessary when one or more of the following conditions are present:
 A. The target volume is in close proximity to critical structures that must be protected and both of the following: * (see source below)
 1. Planned 3D-CRT exposure to critical adjacent structures is above normal tissue constraints
2. Planned IMRT exposure to these critical adjacent structures does not exceed normal tissue constraints
 B. The same or immediately adjacent area has been previously irradiated and abutting portals must be established with high precision

VII. IMRT is considered investigational for the treatment of breast or lung cancer for all indications not meeting the criteria above, including palliative care when criteria for approval are not met.

Image Guided Radiation Therapy (IGRT)

VIII. IGRT may be considered medically necessary as an approach to delivering radiotherapy when combined with any of the following treatments (see Policy Guidelines):
 A. Intensity-modulated radiotherapy (IMRT)
 B. Stereotactic body radiation therapy (SBRT)
 C. Proton delivery

IX. IGRT is considered investigational as an approach to delivering radiotherapy when combined with any of the following treatments:
 A. Conventional three-dimensional conformal radiation therapy (3D CRT) (see Policy Guidelines for considerations)
 B. Stereotactic radiosurgery (SRS)
 C. Electronic brachytherapy

NOTE: Refer to Appendix A to see the policy statement changes (if any) from the previous version.

Policy Guidelines

Fractionation: Dose distribution may be delivered in standard doses (fractionated) or higher doses over a shorter period of time (hypofractionated). The advantages of hypofractionation include patient convenience and lower cost, although potential increased radiation toxicity remains a concern for some tumor types. For women with invasive breast cancer receiving whole breast irradiation (WBI) with or without inclusion of the low axilla, hypofractionated WBI to a dose of 4000-4250 cGy in 15-16 fractions is considered the treatment of choice. Boost treatments (4-8 fractions), generally using 3D conformal radiation therapy, is administered based on individual clinical circumstances, but is commonly used to treat axillary or other lymph nodes. Treatment regimens other than this may be considered medically necessary based on individual circumstances, which would require documentation to support.

Organs at risk:
Organs at risk are defined as normal tissues whose radiation sensitivity may significantly influence treatment planning and/or prescribed radiation dose. These organs at risk may be particularly vulnerable to clinically important complications from radiation toxicity.

*The following Normal Tissue Constraint Guidelines are derived from the textbook: Radiation Oncology: A Question-Based Review published by Lippincott Williams & Wilkins, 2010 [author: Hristov et al., 2010]). According to the author, most dosages were derived from randomized studies or consensus guidelines however; pediatric dose constraints will vary greatly from protocol to protocol. Sources used in the development of the guidelines included the American Brachytherapy Society (ABS); Clinical practice guidelines from Johns Hopkins Hospital (JHH); the International Journal of Radiation Oncology *Biology* Physics (IJROBP); the National Comprehensive Cancer Network (NCCN), Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC); and the Radiation Therapy Oncology Group (RTOG) protocols at the time of publication.*
The following guidelines are only intended to serve as a guide and may not be applicable to all clinical scenarios.

<table>
<thead>
<tr>
<th>Organ</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Nervous System (1.8–2.0 Gy/fx)</td>
<td></td>
</tr>
<tr>
<td>· Spinal Cord</td>
<td>max 50 Gy (full cord cross-section); tolerance increases by 25% 6 mos after 1st course (for re-irradiation)</td>
</tr>
<tr>
<td>· Brain</td>
<td>max 72 Gy (partial brain); avoid >2 Gy/fx or hyperfractionation</td>
</tr>
<tr>
<td>· Chiasm/Optic Nerves</td>
<td>max 55 Gy</td>
</tr>
<tr>
<td>· Brainstem</td>
<td>Entire brainstem <54 Gy, V59 Gy <1–10 cc</td>
</tr>
<tr>
<td>· Eyes (globe)</td>
<td>mean <35 Gy, max 54 Gy</td>
</tr>
<tr>
<td>· Lens</td>
<td>max 7 Gy</td>
</tr>
<tr>
<td>· Retina</td>
<td>max 50 Gy</td>
</tr>
<tr>
<td>· Lacrimal Gland</td>
<td>max 40 Gy</td>
</tr>
<tr>
<td>· Inner ear/cochlea</td>
<td>mean </=45 Gy (consider constraining to </=35 Gy with concurrent cisplatin)</td>
</tr>
<tr>
<td>· Pituitary gland</td>
<td>max 45 Gy (for panhypopituitarism, lower for GH deficiency)</td>
</tr>
<tr>
<td>· Cauda equina</td>
<td>max 60 Gy</td>
</tr>
<tr>
<td>Central Nervous System (single fraction)</td>
<td></td>
</tr>
<tr>
<td>· Spinal Cord</td>
<td>max 13 Gy (if 3 fxs, max 20 Gy)</td>
</tr>
<tr>
<td>· Brain</td>
<td>V12 Gy <5–10 cc</td>
</tr>
<tr>
<td>· Chiasm/Optic Nerves</td>
<td>max 10 Gy</td>
</tr>
<tr>
<td>· Brainstem</td>
<td>max 12.5 Gy</td>
</tr>
<tr>
<td>· Sacral plexus</td>
<td>V18 <0.035 cc, V14.4 <5 cc</td>
</tr>
<tr>
<td>· Cauda equina</td>
<td>V16 <0.035 cc, V14 <5 cc</td>
</tr>
<tr>
<td>Head and Neck (1.8–2.0 Gy/fx)</td>
<td></td>
</tr>
<tr>
<td>· Parotid gland(s)</td>
<td>mean <25 Gy (both glands) or mean <20 Gy (1 gland)</td>
</tr>
<tr>
<td>· Submandibular gland(s)</td>
<td>mean <35 Gy</td>
</tr>
<tr>
<td>· Larynx</td>
<td>mean </=44 Gy, V50 </=27%, max 63–66 Gy (when risk of tumor involvement is limited)</td>
</tr>
<tr>
<td>· TMJ/mandible</td>
<td>max 70 Gy (if not possible, then V75 <1 cc)</td>
</tr>
<tr>
<td>· Oral cavity</td>
<td>Non–oral cavity: mean <30 Gy, avoid hot spots >60 Gy</td>
</tr>
<tr>
<td>· Esophagus (cervical)</td>
<td>Oral cavity: mean <50 Gy, V55 <1 cc, max 65 Gy</td>
</tr>
<tr>
<td>· Pharyngeal constrictors</td>
<td>mean <50 Gy</td>
</tr>
<tr>
<td>· Thyroid</td>
<td>V26 <20%</td>
</tr>
<tr>
<td>Thoracic (1.8–2.0 Gy/fx)</td>
<td></td>
</tr>
<tr>
<td>· Brachial plexus</td>
<td>max 66 Gy, V60 <5%</td>
</tr>
<tr>
<td>· Lung (combined lung for lung cancer treatment)</td>
<td>mean <20–23 Gy, V20 <30%–35%</td>
</tr>
<tr>
<td>· Lung (ipsilateral lung for breast cancer treatment)</td>
<td>V25 <10%</td>
</tr>
<tr>
<td>· Single lung (after pneumonectomy)</td>
<td>V5 <60%, V20 <4–10%, MLD <8 Gy</td>
</tr>
<tr>
<td>· Bronchial tree</td>
<td>max 80 Gy</td>
</tr>
<tr>
<td>· Heart (lung cancer treatment)</td>
<td>Heart V45 <67%; V60 <33%</td>
</tr>
<tr>
<td>· Heart (breast cancer treatment)</td>
<td>V25 <10%</td>
</tr>
<tr>
<td>· Esophagus</td>
<td>V50 <32%; V60 <33%</td>
</tr>
<tr>
<td>Thoracic (hypofractionation)</td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>the max dose limits refer to volumes >0.035 cc (~3 mm³).</td>
</tr>
<tr>
<td>· Spinal cord</td>
<td>1 fraction: 14 Gy 3 fractions: 18 Gy (6 Gy/fx) 4 fractions: 26 Gy (6.5 Gy/fx)</td>
</tr>
<tr>
<td>Organ</td>
<td>Constraints</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>5 fractions: 30 Gy (6 Gy/fx)</td>
</tr>
<tr>
<td>• Esophagus</td>
<td>1 fraction: 15.4 Gy</td>
</tr>
<tr>
<td></td>
<td>3 fractions: 30 Gy (10 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>4 fractions: 30 Gy (7.5 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>5 fractions: 32.5 Gy (6.5 Gy/fx)</td>
</tr>
<tr>
<td>• Brachial plexus</td>
<td>1 fraction: 17.5 Gy</td>
</tr>
<tr>
<td></td>
<td>3 fractions: 21 Gy (7 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>4 fractions: 27.2 Gy (6.8 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>5 fractions: 30 Gy (6 Gy/fx)</td>
</tr>
<tr>
<td>• Heart/Pericardium</td>
<td>1 fraction: 22 Gy</td>
</tr>
<tr>
<td></td>
<td>3 fractions: 30 Gy (10 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>4 fractions: 34 Gy (8.5 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>5 fractions: 35 Gy (7 Gy/fx)</td>
</tr>
<tr>
<td>• Great vessels</td>
<td>1 fraction: 37 Gy</td>
</tr>
<tr>
<td></td>
<td>3 fractions: 39 Gy (13 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>4 fractions: 49 Gy (12.25 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>5 fractions: 55 Gy (11 Gy/fx)</td>
</tr>
<tr>
<td>• Trachea/Large Bronchus</td>
<td>1 fraction: 20.2 Gy</td>
</tr>
<tr>
<td></td>
<td>3 fractions: 30 Gy (10 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>4 fractions: 34.8 Gy (8.7 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>5 fractions: 40 Gy (8 Gy/fx)</td>
</tr>
<tr>
<td>• Rib</td>
<td>1 fraction: 30 Gy</td>
</tr>
<tr>
<td></td>
<td>3 fractions: 30 Gy (10 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>4 fractions: 32 Gy (7.8 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>5 fractions: 32.5 Gy (6.5 Gy/fx)</td>
</tr>
<tr>
<td>• Skin</td>
<td>1 fraction: 26 Gy</td>
</tr>
<tr>
<td></td>
<td>3 fractions: 30 Gy (10 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>4 fractions: 36 Gy (9 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>5 fractions: 40 Gy (8 Gy/fx)</td>
</tr>
<tr>
<td>• Stomach</td>
<td>1 fraction: 12.4 Gy</td>
</tr>
<tr>
<td></td>
<td>3 fractions: 27 Gy (9 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>4 fractions: 30 Gy (7.5 Gy/fx)</td>
</tr>
<tr>
<td></td>
<td>5 fractions: 35 Gy (7 Gy/fx)</td>
</tr>
<tr>
<td>Gastrointestinal (GI) (1.8–2.0 Gy/fx)</td>
<td></td>
</tr>
<tr>
<td>• Stomach</td>
<td>TD 5/5 whole stomach: 45 Gy</td>
</tr>
<tr>
<td>• Small bowel</td>
<td>V45 <195 cc</td>
</tr>
<tr>
<td>• Liver (metastatic disease)</td>
<td>mean liver <32 Gy (liver = normal liver minus gross disease)</td>
</tr>
<tr>
<td>• Liver (primary liver cancer)</td>
<td>mean liver <28 Gy (liver = normal liver minus gross disease)</td>
</tr>
<tr>
<td>• Colon</td>
<td>45 Gy, max dose 55 Gy</td>
</tr>
<tr>
<td>• Kidney (bilateral)</td>
<td>mean <18 Gy, V28 <20%, V23 Gy <30%, V20 <32%, V12 <55%. If mean kidney dose to 1 kidney >18 Gy, then constrain remaining kidney to V6 <30%.</td>
</tr>
<tr>
<td>Gastrointestinal (GI) (single fraction)</td>
<td></td>
</tr>
<tr>
<td>• Duodenum</td>
<td>V16 <0.035 cc, V11.2 <5 cc</td>
</tr>
<tr>
<td>• Kidney (Cortex)</td>
<td>V8.4 <200 cc</td>
</tr>
<tr>
<td>• Kidney (Hilum)</td>
<td>V10.6 <66%</td>
</tr>
<tr>
<td>• Colon</td>
<td>V14.3 <20 cc, V18.4 <0.035 cc</td>
</tr>
<tr>
<td>• Jejunum/Ileum</td>
<td>V15.4 <0.035 cc, V11.9 <5 cc</td>
</tr>
<tr>
<td>• Stomach</td>
<td>V16 <0.035 cc, V11.2 <10 cc</td>
</tr>
<tr>
<td>• Rectum</td>
<td>V18.4 <0.035 cc, V14.3 <20 cc</td>
</tr>
<tr>
<td>Genitourinary (GU) (1.8–2.0 Gy/fx)</td>
<td></td>
</tr>
<tr>
<td>• Femoral heads</td>
<td>V50 <5%</td>
</tr>
</tbody>
</table>
Organs and Constraints

<table>
<thead>
<tr>
<th>Organ</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectum</td>
<td>V75 <15%, V70 <20%, V65 <25%, V60 <35%, V50 <50%</td>
</tr>
<tr>
<td>Bladder</td>
<td>V80 <15%, V75 <25%, V70 <35%, V65 <50%</td>
</tr>
<tr>
<td>Testis</td>
<td>V3 <50%</td>
</tr>
<tr>
<td>Penile bulb</td>
<td>Mean dose to 95% of the volume <50 Gy. D70 <=70 Gy, D50 <=50 Gy</td>
</tr>
</tbody>
</table>

Genitourinary (GU) (LDR prostate brachytherapy)

<table>
<thead>
<tr>
<th>Organ</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urethra</td>
<td>Volume of urethra receiving 150% of prescribed dose (Ur150) <30%</td>
</tr>
<tr>
<td>Rectum</td>
<td>Volume of rectum receiving 100% of prescribed dose (RV100) <0.5 cc</td>
</tr>
</tbody>
</table>

Gynecological (GYN)

<table>
<thead>
<tr>
<th>Organ</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bladder point (cervical brachytherapy)</td>
<td>Max 80 Gy (LDR equivalent dose)</td>
</tr>
<tr>
<td>Rectal point (cervical brachytherapy)</td>
<td>Max 75 Gy (LDR equivalent dose)</td>
</tr>
<tr>
<td>Proximal vagina (mucosa) (cervical brachytherapy)</td>
<td>Max 120 Gy (LDR equivalent dose)</td>
</tr>
<tr>
<td>Distal vagina (mucosa) (cervical brachytherapy)</td>
<td>Max 98 Gy (LDR equivalent dose)</td>
</tr>
</tbody>
</table>

Coding

Image Guided Radiation Therapy (IGRT) Considerations:

The following codes are for hospital outpatient IMRT/SBRT delivery use which includes image guidance in the delivery code for the facility (technical, or -TC modifier) component. However, the professional component (-26 modifier) is still allowed for payment.

- **77385**: Intensity modulated radiation treatment delivery (IMRT), includes guidance and tracking, when performed; simple
- **77386**: Intensity modulated radiation treatment delivery (IMRT), includes guidance and tracking, when performed; complex
- **77373**: Stereotactic body radiation therapy, treatment delivery, per fraction to 1 or more lesions, including image guidance, entire course not to exceed 5 fractions

Note: Proton delivery codes do not include image guidance, so IGRT codes for both TC and professional components can be billed separately when indicated. IGRT may be indicated for some conventional 3D CRT cases such as a morbidly obese individual with an abdominal target in which standard approaches for guidance are inadequate. Cases can be considered for approval on an individual basis.

The Centers for Medicare & Medicaid Services (CMS) did not implement the above mentioned CPT codes (77385 & 77386) and instead created HCPCS G codes for freestanding outpatient centers. The following delivery codes may also be used for IMRT depending on the setting. They do not include image guidance, so both the technical and professional components are allowed when criteria are met.

- **G6015**: Intensity modulated treatment delivery, single or multiple fields/arcs, via narrow spatially and temporally modulated beams, binary, dynamic MLC, per treatment session
- **G6016**: Compensator-based beam modulation treatment delivery of inverse planned treatment using 3 or more high resolution (milled or cast) compensator, convergent beam modulated fields, per treatment session
The following codes are typical for IGRT. Up to one unit per session can be allowed (although balanced by additional radiation for the imaging, so IGRT may not take place with every treatment session).

- **77014**: Computed tomography guidance for placement of radiation therapy fields
- **G6001**: Ultrasonic guidance for placement of radiation therapy fields
- **G6002**: Stereoscopic x-ray guidance for localization of target volume for the delivery of radiation therapy

The following codes do not have a technical (facility) component but can be used for professional services only. Since there is no specific code for MRI guidance, 77387 can be considered for approval for professional services for MRI guidance when appropriate documentation is submitted, but can also be used for other types of guidance.

- **77387**: Guidance for localization of target volume for delivery of radiation treatment, includes intrafraction tracking, when performed
- **G6017**: Intra-fraction localization and tracking of target or patient motion during delivery of radiation therapy (e.g., 3D positional tracking, gating, 3D surface tracking), each fraction of treatment

Note: G6017 does not have a technical (facility) component (usually done by a technician covered by the facility delivery fee), and intra-fraction tracking is unusual to involve physician guidance, so documentation of that service should be provided if billed for professional services.

Code 77301 remains valid:

- **77301**: Intensity modulated radiotherapy plan, including dose-volume histograms for target and critical structure partial tolerance specifications

The following CPT code may also be used and is to be reported only once per IMRT plan:

- **77338**: Multi-leaf collimator (MLC) device(s) for intensity modulated radiation therapy (IMRT), design and construction per IMRT plan

The following codes may be used for this application:

- **77261**: Therapeutic radiology treatment planning; simple
- **77262**: Therapeutic radiology treatment planning; intermediate
- **77263**: Therapeutic radiology treatment planning; complex
- **77293**: Respiratory motion management simulation (List separately in addition to code for primary procedure)
- **77300**: Basic radiation dosimetry calculation, central axis depth dose calculation, TDF, NSD, gap calculation, off axis factor, tissue inhomogeneity factors, calculation of non-ionizing radiation surface and depth dose, as required during course of treatment, only when prescribed by the treating physician
- **77306**: Teletherapy isodose plan; simple (1 or 2 unmodified ports directed to a single area of interest), includes basic dosimetry calculation(s)
- **77307**: Teletherapy isodose plan; complex (multiple treatment areas, tangential ports, the use of wedges, blocking, rotational beam, or special beam considerations), includes basic dosimetry calculation(s)
- **77331**: Special dosimetry (e.g., TLD, microdosimetry) (specify), only when prescribed by the treating physician
- **77332**: Treatment devices, design and construction; simple (simple block, simple bolus)
- **77334**: Treatment devices, design and construction; complex (irregular blocks, special shields, compensators, wedges, molds or casts)
- **77370**: Special medical radiation physics consultation
- **77470**: Special treatment procedure (e.g., total body irradiation, hemibody radiation, per oral or endocavitary irradiation)
- **77336**: Continuing medical physics consultation, including assessment of treatment parameters, quality assurance of dose delivery, and review of patient treatment documentation in support of the radiation oncologist, reported per week of therapy
- **77338**: Multi-leaf collimator (MLC) device(s) for intensity modulated radiation therapy (IMRT), design and construction per IMRT plan
- **77427**: Radiation treatment management, 5 treatments
- **77417**: Therapeutic radiology port image(s)

Allowable Codes and Frequencies for IMRT/Proton

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Maximum per course of treatment</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>For IMRT:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGRT (Image Guided Radiation Therapy)</td>
<td>77014 (CT)</td>
<td>Professional portion allowed for up to 1 unit for each delivery session when provided</td>
<td>Facility fee (TC) included with delivery codes 77385/77386/77373 for IMRT/SBRT. 77387 and G6017 are for pro fee only. Others need -26 modifier for approval</td>
</tr>
<tr>
<td>For Proton:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGRT (Image Guided Radiation Therapy)</td>
<td>77014, 77387, G6001, G6002, G6017</td>
<td>Up to 1 unit per delivery session when provided</td>
<td>Facility fee (TC) not included with delivery codes for proton so they can be billed. 77387 and G6017 are for pro fee only. Others need -26 or TC modifiers.</td>
</tr>
<tr>
<td>Clinical Treatment Planning</td>
<td>77261, 77262 or 77263</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td>77280, 77285, 77290</td>
<td>0</td>
<td>May not be billed with 77301. 1 unit of 77290 +1 boost is allowed for proton therapy when using 77295 instead</td>
</tr>
<tr>
<td>Verification Simulation</td>
<td>77280</td>
<td>0</td>
<td>One per simulation allowed</td>
</tr>
<tr>
<td>Respiratory motion management</td>
<td>77293</td>
<td>0</td>
<td>1 for breast, lung, and upper abdominal cancer (thoracic areas)</td>
</tr>
<tr>
<td>3D CRT plan</td>
<td>77295</td>
<td>0</td>
<td>May not be billed with 77301. 1 unit may be allowed for proton therapy.</td>
</tr>
<tr>
<td>IMRT plan</td>
<td>77301</td>
<td>1</td>
<td>If comparison 3D plan is generated, it is included in 77301</td>
</tr>
<tr>
<td>Basic Dosimetry</td>
<td>77300</td>
<td>4+1 boost, up to a max of 10 with documentation</td>
<td>0 if billed with 77306, 77307, 77321, 0394T or 0395T</td>
</tr>
<tr>
<td>Teletherapy Isodose plan, simple</td>
<td>77306</td>
<td>1 for mid-Tx change in volume/contour</td>
<td>Not on the same day as 77300; may not bill 77306 and 77307 together; documentation of medical necessity is required for more than 1</td>
</tr>
<tr>
<td>Teletherapy Isodose plan, complex</td>
<td>77307</td>
<td>1 for mid-Tx change in volume/contour</td>
<td>Not on the same day as 77300; may not bill 77306 and 77307 together; documentation of medical necessity is required for more than 1</td>
</tr>
<tr>
<td>Special Dosimetry Calculation</td>
<td>77331</td>
<td>0</td>
<td>Needs documentation for review</td>
</tr>
<tr>
<td>Treatment devices, designs, and construction</td>
<td>77332, 77333, 77334</td>
<td>1, 5 or 10</td>
<td>If billed w/ MLC (77338): 1 If billed w/o MLC: 5 (any combination) More may be allowed when documentation of medical necessity is provided (such as additional beams), maximum of 10</td>
</tr>
<tr>
<td>Multi-leaf collimator (MLC)</td>
<td>77338</td>
<td>1</td>
<td>MLC may not be reported in conjunction with HCPCS G6016</td>
</tr>
<tr>
<td>Special radiation physics consult</td>
<td>77370</td>
<td>0</td>
<td>May allow x 1; documentation of medical necessity required</td>
</tr>
</tbody>
</table>
Description

Radiotherapy (RT) is an integral component of the treatment of breast and lung cancers. Intensity-modulated radiotherapy (IMRT) has been proposed as a method of RT that allows adequate radiation to the tumor while minimizing the radiation dose to surrounding normal tissues and critical structures.

Related Policies

- Intensity-Modulated Radiotherapy of the Prostate
- Intensity-Modulated Radiotherapy: Abdomen, Pelvis and Chest
- Intensity-Modulated Radiotherapy: Cancer of the Head and Neck or Thyroid
- Intensity-Modulated Radiotherapy: Central Nervous System Tumors
- Radiation Oncology

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Maximum per course of treatment</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special MD consultation (Special Tx procedure)</td>
<td>77470</td>
<td>0</td>
<td>May allow x 1; documentation of medical necessity required</td>
</tr>
<tr>
<td>Medical physics management</td>
<td>77336</td>
<td>8</td>
<td>Allowed once per 5 courses of therapy</td>
</tr>
<tr>
<td>Radiation treatment management</td>
<td>77427</td>
<td>8</td>
<td>Allowed once per 5 courses of therapy</td>
</tr>
<tr>
<td>Radiation (IMRT or Proton) delivery, prostate and breast cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMRT 77385 or G6015; Proton 77520, 77522, 77523</td>
<td></td>
<td>Using IMRT or Proton:</td>
<td></td>
</tr>
<tr>
<td>Using IMRT only:</td>
<td></td>
<td>28 for prostate cancer</td>
<td></td>
</tr>
<tr>
<td>Using IMRT only:</td>
<td></td>
<td>-16 for breast cancer without boost</td>
<td></td>
</tr>
<tr>
<td>Using IMRT only:</td>
<td></td>
<td>-24 for breast cancer with boost (IMRT only)</td>
<td></td>
</tr>
<tr>
<td>Prostate cancer: Documentation of medical necessity needed for more than 28 treatments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast cancer: documentation of medical necessity needed for treatments beyond 16 IMRT delivery sessions without boost and/or 24 IMRT delivery sessions with boost.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation (IMRT or Proton) delivery, all other cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMRT 77385, 77386; or G6015-G6016; Proton 77520, 77522, 77523, 77525</td>
<td></td>
<td>No limit</td>
<td>All cancers other than hypofractionated prostate or breast</td>
</tr>
</tbody>
</table>
Regulatory Status

In general, IMRT systems include intensity modulators, which control, block, or filter the intensity of radiation; and RT planning systems, which plan the radiation dose to be delivered.

A number of intensity modulators have been cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process. Intensity modulators include the Innocure Intensity Modulating Radiation Therapy Compensators (Innocure) cleared in 2006, and the decimal tissue compensator (Southeastern Radiation Products), cleared in 2004. FDA product code: IXI. Intensity modulators may be added to standard linear accelerators to deliver IMRT when used with proper treatment planning systems.

Radiotherapy planning systems have also been cleared for marketing by the FDA through the 510(k) process. They include the Prowess Panther (Prowess) in 2003, TiGRT (LinaTech) in 2009, Ray Dose (RaySearch Laboratories) in 2008, and the Accuray Precision Treatment Planning System in 2021 (Accuray Incorporated). FDA product code: MUJ.

Fully integrated IMRT systems are also available. These devices are customizable and support all stages of IMRT delivery, including planning, treatment delivery, and health record management. One such device cleared for marketing by the FDA through the 510(k) process is the Varian® IMRT system (Varian Medical Systems). FDA product code: IYE.

Rationale

Background
For certain stages of many cancers, including breast and lung, randomized controlled trials (RCTs) have shown that postoperative radiotherapy (RT) improves outcomes for operable patients. Adding radiation to chemotherapy also improves outcomes for those with inoperable lung tumors that have not metastasized beyond regional lymph nodes.

Radiotherapy Techniques
Radiation therapy may be administered externally (i.e., a beam of radiation is directed into the body) or internally (i.e., a radioactive source is placed inside the body, near a tumor). External RT techniques include "conventional" or 2-dimensional (2D) RT, 3-dimensional (3D) conformal RT (3D-CRT), and intensity-modulated radiation therapy (IMRT).

Conventional External-Beam Radiotherapy
Methods to plan and deliver RT have evolved that permit more precise targeting of tumors with complex geometries. Conventional 2D treatment planning utilizes X-ray films to guide and position radiation beams. Bony landmarks visualized on X-ray are used to locate a tumor and direct the radiation beams. The radiation is typically of uniform intensity.

Three-Dimensional Conformal Radiotherapy
Radiation treatment planning has evolved to use 3D images, usually from computed tomography (CT) scans, to more precisely delineate the boundaries of the tumor and to discriminate tumor tissue from adjacent normal tissue and nearby organs at risk for radiation damage. Three-dimensional conformal RT involves initially scanning the patient in the position that will be used for the radiation treatment. The tumor target and surrounding normal organs are then outlined in 3D on the scan. Computer software assists in determining the orientation of radiation beams and the amount of radiation the tumor and normal tissues receive to ensure coverage of the entire tumor in order to minimize radiation exposure for at-risk normal tissue and nearby organs. Other imaging techniques and devices such as multileaf collimators (MLCs) may be used to "shape" the radiation beams. Methods have also been developed to position the patient and the radiation portal reproducibly for...
each fraction and to immobilize the patient, thus maintaining consistent beam axes across treatment sessions.

Intensity-Modulated Radiotherapy

Intensity-modulated radiotherapy is the more recent development in external radiation. Treatment planning and delivery are more complex, time-consuming, and labor-intensive for IMRT than for 3D-CRT. Similar to 3D-CRT, the tumor and surrounding normal organs are outlined in 3D by a scan and multiple radiation beams are positioned around the patient for radiation delivery. In IMRT, radiation beams are divided into a grid-like pattern, separating a single beam into many smaller “beamlets.” Specialized computer software allows for “inverse” treatment planning. The radiation oncologist delineates the target on each slice of a CT scan and specifies the target’s prescribed radiation dose, acceptable limits of dose heterogeneity within the target volume, adjacent normal tissue volumes to avoid, and acceptable dose limits within the normal tissues. Based on these parameters and a digitally reconstructed radiographic image of the tumor, surrounding tissues, and organs at risk, computer software optimizes the location, shape, and intensities of the beam ports to achieve the treatment plan’s goals.

Increased conformality may permit escalated tumor doses without increasing normal tissue toxicity and is proposed to improve local tumor control, with decreased exposure to surrounding, normal tissues, potentially reducing acute and late radiation toxicities. Better dose homogeneity within the target may also improve local tumor control by avoiding underdosing within the tumor and may decrease toxicity by avoiding overdosing.

Other advanced techniques may further improve RT treatment by improving dose distribution. These techniques are considered variations of IMRT. Volumetric modulated arc therapy delivers radiation from a continuous rotation of the radiation source. The principal advantage of volumetric modulated arc therapy is greater efficiency in treatment delivery time, reducing radiation exposure and improving target radiation delivery due to less patient motion. Image-guided RT involves the incorporation of imaging before and/or during treatment to more precisely deliver RT to the target volume.

Investigators are exploring an active breathing control device combined with moderately deep inspiration breath-holding techniques to improve conformity and dose distributions during IMRT for breast cancer. Techniques presently being studied with other tumors (e.g., lung cancer) either gate beam delivery to the patient’s respiratory movement or continuously monitor tumor (by in-room imaging) or marker (internal or surface) positions to aim radiation more accurately at the target. The impact of these techniques on the outcomes of 3D-CRT or IMRT for breast cancer is unknown. However, it appears likely that respiratory motion alters the dose distributions actually delivered while treating patients from those predicted by plans based on static CT scans or measured by dosimetry using stationary (nonbreathing) targets.

Literature Review

Evidence reviews assess the clinical evidence to determine whether the use of a technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life, and ability to function—including benefits and harms. Every clinical condition has specific outcomes that are important to patients and to managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of a technology, 2 domains are examined: the relevance and the quality and credibility. To be relevant, studies must represent 1 or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some
conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. Randomized controlled trials are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Multiple-dose planning studies generate 3-dimensional (3D) conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) treatment plans from the same scans and then compare predicted dose distributions within the target area and adjacent organs. Results of such planning studies have shown that IMRT is better than 3D-CRT with respect to conformality to, and dose homogeneity within, the target. Results have also demonstrated that IMRT delivers less radiation to nontarget areas. Dosimetry studies using stationary targets generally confirm these predictions. However, because patients move during treatment, dosimetry with stationary targets only approximates actual radiation doses received. Based on these dosimetry studies, radiation oncologists expect IMRT to improve treatment outcomes compared with those of 3D-CRT.

Comparative studies of radiation-induced adverse events from IMRT versus alternative radiation delivery would constitute definitive evidence of establishing the benefit of IMRT. Single-arm series of IMRT can give insights into the potential for benefit, particularly if an adverse event that is expected to occur at high rates is shown to decrease by a large amount. Studies of treatment benefit are also important to establish that IMRT is at least as good as other types of delivery, but, in the absence of such comparative trials, it is likely that the benefit from IMRT is at least as good as with other types of delivery.

In general, when the indication for IMRT is to avoid radiation to sensitive areas, dosimetry studies have been considered sufficient evidence to demonstrate that harm would be avoided by using IMRT. For other indications, such as using IMRT to provide better tumor control, comparative studies of health outcomes are needed to demonstrate such a benefit.

Promotion of greater diversity and inclusion in clinical research of historically marginalized groups (e.g., People of Color [African-American, Asian, Black, Latino and Native American]; LGBTQIA [Lesbian, Gay, Bisexual, Transgender, Queer, Intersex, Asexual]; Women; and People with Disabilities [Physical and Invisible]) allows policy populations to be more reflective of and findings more applicable to our diverse members. While we also strive to use inclusive language related to these groups in our policies, use of gender-specific nouns (e.g., women, men, sisters, etc.) will continue when reflective of language used in publications describing study populations.

Breast Cancer

Clinical Context and Therapy Purpose

The purpose of the use of IMRT in individuals who have breast cancer is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations

The relevant population of interest is individuals with breast cancer.

Interventions

The therapy being considered is IMRT. Radiotherapy (RT) is an integral component of the treatment of breast cancer; IMRT has been proposed as a method of RT that allows adequate radiation to the tumor while minimizing the radiation dose to surrounding normal tissues and critical structures.
Comparators
The following therapy is currently being used to make decisions about breast cancer: 2-dimensional (2D) and 3D-CRT.

Outcomes
The general outcomes of interest are overall survival (OS), disease-specific survival, locoregional control, quality of life, and treatment-related adverse events (e.g., radiation dermatitis).

The grading of acute radiation dermatitis is relevant to studies of IMRT for the treatment of breast cancer. Acute radiation dermatitis is graded on a scale of 0 (no change) to 5 (death). Grade 2 is moderate erythema and patchy moist desquamation, mostly in skin folds; grade 3 is moist desquamation in other locations and bleeding with minor trauma. Publications have also reported on the potential for IMRT to reduce radiation to the heart (left ventricle) in patients with left-sided breast cancer and unfavorable cardiac anatomy.6 This is a concern because of the potential development of late cardiac complications (e.g., coronary artery disease) following fractionated radiotherapy (FRT) to the left breast.

In addition, IMRT may reduce toxicity to structures adjacent to tumors, allowing dose escalation to the target area and fewer breaks in treatment courses due to a reduction in side effects. However, this may come with a loss of locoregional control and OS.

Follow-up after IMRT varies by the staging of breast cancer and patient age at diagnosis. A 5- to 10-year follow-up to monitor for recurrence has been recommended.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs.
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Studies with duplicative or overlapping populations were excluded.

Review of Evidence
Whole-Breast Irradiation With Intensity-Modulated Radiotherapy versus 2-Dimensional Radiotherapy

Systematic Reviews
Dayes et al (2012) conducted a systematic review of the evidence for IMRT for whole-breast irradiation in the treatment of breast cancer to quantify its potential benefits and to make recommendations for radiation treatment programs.7 Based on a review of 6 studies (N=2012) published through March 2009 (1 RCT, 3 retrospective cohort studies, 1 historically controlled trial, 1 prospective cohort), reviewers recommended IMRT over conventional RT after breast-conserving surgery to avoid acute adverse events associated with radiation. There were insufficient data to recommend IMRT over conventional RT based on oncologic outcomes or late toxicity. The RCT included in this review was the Canadian multicenter trial by Pignol et al (2008), details of which are reported in the next section.2 In this RCT, IMRT was compared with 2D-RT. Computed tomography (CT) scans were used in treatment planning for both arms of the study. The types of conventional RT regimens used in the other studies were not reported.

Randomized Controlled Trials
Donovan et al (2007) evaluated IMRT as compared to 2D-RT (using standard wedge compensators) regarding late adverse effects after whole breast RT.1 Enrolled patients had a “higher than average
risk of late radiotherapy-adverse effects,” which included patients with larger breasts. Trialists stated that while breast size was not particularly good at identifying women with dose inhomogeneity falling outside current International Commission on Radiation Units and Measurements guidelines, their trial excluded women with small breasts (≤ 500 cm³), who generally have fairly good dosimetry with standard 2D compensators. All patients were treated with 6 or 10 megavolt photons to a dose of 50 gray (Gy) in 25 fractions in 5 weeks followed by an electron boost to the tumor bed of 11.1 Gy in 5 fractions. The primary endpoint (change in breast appearance) was scored from serial photographs taken before RT and at 1-, 2-, and 5-year follow-ups. Secondary endpoints included patient self-assessments of breast discomfort, breast hardness, quality of life, and physician assessments of breast induration. Two hundred forty (79%) patients with 5-year photographs were available for analysis. Change in breast appearance was identified in 71 (58%) of 122 patients allocated standard 2D treatment compared with 47 (40%) of 118 patients allocated IMRT. Significantly fewer patients in the IMRT group developed palpable induration assessed clinically in the center of the breast, pectoral fold, inframammary fold, and at the boost site. No significant differences between treatment groups were found in patient-reported breast discomfort, breast hardness, or quality of life. The authors concluded that minimization of unwanted radiation dose inhomogeneity in the breast reduced late adverse events. While the change in breast appearance differed statistically, a beneficial effect on quality of life was not demonstrated.

The multicenter, double-blind RCT by Pignol et al (2008, 2016) evaluated whether breast IMRT would reduce the rate of acute skin reaction (moist desquamation), decrease pain, and improve quality of life compared with 2D-RT using wedges.28 Patients were assessed each week up to 6 weeks after RT and then at 8 to 10 years. A total of 358 patients were randomized between 2003 and 2005 at 2 Canadian centers, and 331 were analyzed. Of these, 241 patients were available for long-term follow-up. The trialists noted that breast IMRT significantly improved dose distribution compared with 2D-RT. They also noted a lower proportion of patients with moist desquamation during or up to 6 weeks after RT (31% with IMRT vs. 48% with standard treatment; p=.002). A multivariate analysis found the use of breast IMRT and smaller breast size were significantly associated with a decreased risk of moist desquamation. The presence of moist desquamation significantly correlated with pain and a reduced quality of life. At a median follow-up of 9.8 years, there was no significant difference in chronic pain between treatment arms. Young age (p=.013) and pain during RT (p<.001) were associated with chronic pain. Poorer self-assessed cosmetic outcome (p<.001) and quality of life (p<.001) were also associated with pain during RT.

Barnett et al (2009) published baseline characteristics and dosimetry results of a single-center RCT assessing IMRT for early breast cancer after breast-conserving surgery.9 Subsequently, Barnett et al (2012) reported on the 2-year interim results of this RCT.10 In this trial, 1145 patients with early breast cancer were evaluated for external-beam RT. Twenty-nine percent had adequate dosimetry with standard RT. The other 815 patients were randomized to IMRT or 2D-RT. Inhomogeneity occurred most often when the dose-volume was greater than 107% (V107) of the prescribed dose to a breast volume greater than 2 cm³ with conventional RT. When breast separation was 21 cm or more, 90% of patients had received greater than V107 of the prescribed dose to greater than 2 cm³ with standard radiation planning. The incidence of acute toxicity did not differ significantly between groups. Additionally, photographic assessment scores for breast shrinkage did not differ significantly between groups. The authors noted overall cosmesis after 2D-RT and IMRT was dependent on surgical cosmesis, suggesting breast shrinkage and induration were due to surgery rather than radiation, thereby masking the potential cosmetic benefits of IMRT.

Whole-Breast Irradiation With Intensity-Modulated Radiotherapy versus 3-Dimensional Conformal Radiotherapy Randomized Controlled Trials
In their RCT, Jagsi et al (2018) assessed whether IMRT with deep inspiration breath hold (DIBH) reduces cardiac or pulmonary toxicity of breast RT compared to 3D-CRT. The study included 62 women with node-positive breast cancer in whom RT was indicated for treating the left breast or
chest wall and the internal mammary, infraclavicular, and supraclavicular nodal regions. The primary outcome was the percentage decrease in heart perfusion at 1 year post-treatment compared to baseline, measured using attenuation corrected single-photon emission CT. A secondary outcome was a change in left ventricular ejection fraction. The 3D-CRT group received ≥ 5 Gy to 15.8% of the left ventricle; the IMRT-DIBH group received 5.6% to the left ventricle (p < .001). At 1 year, no differences in perfusion of the heart were detected; however, significant differences were found in left ventricular ejection fraction. In the 3D-CRT arm, 6 patients had > 5% changes in left ventricular ejection fraction, and the IMRT-DIBH arm had 1 patient with > 5% change. The authors contend that their study is important because it demonstrates that the IMRT-DIBH technique’s reduction in cardiac dose could be associated with better preservation of cardiac left ventricle function—a potentially clinically meaningful finding. One limitation of this study is its small size, and only 1 follow-up scan was conducted at 1 year due to resource constraints. A 6-month scan might have shown greater differences between the 2 arms.

Choi et al (2021) compared disease control and safety of IMRT to 3D-CRT in a multicenter, phase III, open-label, randomized (1:1) trial enrolling 693 women who had undergone breast-conserving surgery for breast cancer staging pT1-2N0M0 with a negative resection margin in Korea. The 3D-CRT group received 50.4 Gy in 28 fractions on the ipsilateral breast with additional 9 Gy in 5 fractions on the tumor bed for 6.5 weeks. In the IMRT group, patients received 50.4 Gy in 28 fractions on the ipsilateral breast with a simultaneous integrated boost of 57.4 Gy in 28 fractions on the tumor bed for 5.5 weeks. The primary endpoint was 3-year locoregional recurrence-free survival; secondary endpoints included recurrence-free survival, distant metastasis-free survival, OS, acute toxicity, irradiation dose to organs at risk, and fatigue inventory. Results revealed a 3-year locoregional recurrence-free survival rate of 99.4% in the 3D-CRT arm versus 98.5% in the IMRT arm (p < .523). Similarly, there was no statistically significant difference between the 3D-CRT and IMRT groups in 3-year distant metastasis-free survival (98.8% vs. 99.6%, respectively; p < .115), recurrence-free survival (97.4% vs. 98.2%, respectively; p < .418), or OS (99.6% vs. 100%, respectively; p = .165). Regarding toxicity, grade 2 or higher radiation dermatitis occurred less frequently in the IMRT arm (37.1% vs. 27.8%; p = .009). Fatigue was observed in 97.7% of patients in the 3D-CRT arm versus 98.5% of patients in the IMRT arm using a brief fatigue inventory survey. The mean lung dose and V5 to V50 for the ipsilateral lung were significantly lower in the IMRT arm than the 3D-CRT arm (all p < .05).

Horner-Rieber et al (2021) evaluated the effects of conventional fractionated IMRT with simultaneous integrated boost to 3D-CRT with sequential boost in the prospective, multicenter, randomized, noninferiority, phase III, IMRT-MC2 trial. This trial enrolled 502 patients with breast cancer treated with breast-conserving surgery followed by adjuvant whole-breast irradiation with boost irradiation to the lumpectomy cavity. The IMRT group received a total dose of 50.4 Gy in 1.8 Gy daily fractions with a simultaneous integrated boost to the tumor bed, for a total dose of 64.4 Gy. The 3D-CRT group received a total dose of 50.4 Gy in 1.8 Gy daily fractions, followed by a sequential boost to a total dose of 66.4 Gy. Overall treatment times were 1 to 1.6 weeks shorter in the IMRT-simultaneous integrated boost arm as compared with the 3D-CRT-sequential boost arm. After a median follow-up of 5.1 years, results revealed noninferiority between the IMRT and 3D-CRT groups with regard to 2-year local control rate: 99.6% in both arms (hazard ratio [HR], 0.602; 95% confidence interval [CI], 0.123 to 2.452; p = .487). Additionally, noninferiority was seen for cosmesis (according to relative breast retraction assessment score) after IMRT and 3D-CRT at both 6 weeks and 2 years after RT (p = .332). Overall survival rates were also not significantly different between the groups (99.6% for both arms; HR, 3.281; 95% CI, 0.748 to 22.585; p = .148). The authors concluded that clinical outcomes between the groups were similar with a considerably shortened treatment time for the IMRT approach. In a separate published analysis of the IMRT-MC2 trial focused on acute toxicity, there were no significant differences between the groups with regard to any grade radiation dermatitis at the end of treatment (p = .26). However, Grade 2 and 3 radiation dermatitis occurred significantly more often in the IMRT arm (29.1% vs. 20.1% and 3.5% vs. 2.3%) (p = .02). Significantly more patients in the 3D-CRT arm experienced breast/chest wall pain at the initial follow-up visit (p = .02). Another analysis of the IMRT-MC2 trial assessed quality of life outcomes 6 weeks to 2 years after RT. The only significant
difference in quality of life scores between the IMRT-simultaneous integrated boost arm as compared with the 3D-CRT-sequential boost arm was seen 6 weeks after RT for pain and for arm symptoms, both favoring IMRT. However, the between-group differences were diminished over time.

Nonrandomized Comparative Studies

Hardee et al (2012) compared the dosimetric and toxicity outcomes after treatment with IMRT or 3D-CRT for whole-breast irradiation in 97 consecutive patients with early-stage breast cancer, who were assigned to either approach after partial mastectomy based on insurance carrier approval for reimbursement for IMRT.15 Intensity-modulated radiotherapy significantly reduced the maximum radiation dose (Dmax) to the breast (Dmax median, 110% for 3D-CRT vs. 107% for IMRT; p<.001) and improved median dose homogeneity (median, 1.15 for 3D-CRT vs. 1.05 for IMRT; p<.001) compared with 3D-CRT. These dosimetric improvements were seen across all breast volume groups. Grade 2 dermatitis occurred in 13% of patients in the 3D-CRT group and in 2% in the IMRT group. Intensity-modulated radiotherapy moderately decreased rates of acute pruritus (p=.03) and grade 2 and 3 subacute hyperpigmentation (p=.01). With a minimum of 6 months of follow-up, the treatment was reported to be similarly well-tolerated by both groups, including among women with large breast volumes.

Guttmann et al (2018) published a single-center retrospective analysis of 413 women who received tangential whole-breast irradiation between 2011 and 2015 (Table 1).16 Of the patients, 212 underwent IMRT and 201 received 3D-CRT. The main endpoint was a comparison of acute radiation dermatitis (grade 2+), and secondary endpoints were acute fatigue and breast pain. Grade 2+ radiation dermatitis was experienced by 59% of 3D-CRT patients and 62% of IMRT patients (p=.09). There was also no significant difference between 3D-CRT and IMRT for breast pain (grade 2+, 18% vs. 18%, respectively; p=.33) or fatigue (grade 2+, 18% vs. 25.5%, respectively; p=.24) (Table 2). A study limitation was that follow-up varied across patients because those treated with IMRT completed treatment 1 week sooner than those treated with 3D-CRT.

Table 1. Summary of Key Nonrandomized Trials Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Country</th>
<th>Dates</th>
<th>Participants</th>
<th>Treatment</th>
<th>Comparator</th>
<th>FU</th>
</tr>
</thead>
</table>

3D-CRT: 3-dimensional conformal radiotherapy; FU: follow-up; IMRT: intensity-modulated radiotherapy.

Table 2. Summary of Key Nonrandomized Trials Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Acute Radiation Dermatitis</th>
<th>Acute Fatigue</th>
<th>Acute Breast Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guttmann et al (2018)</td>
<td>212</td>
<td>212</td>
<td>212</td>
</tr>
<tr>
<td>IMRT</td>
<td>Grade 0 = 1</td>
<td>Grade 0 = 46</td>
<td>Grade 0 = 26</td>
</tr>
<tr>
<td></td>
<td>Grade 1 = 78</td>
<td>Grade 1 = 127</td>
<td>Grade 1 = 127</td>
</tr>
<tr>
<td></td>
<td>Grade 2 = 129</td>
<td>Grade 2 = 39</td>
<td>Grade 2 = 39</td>
</tr>
<tr>
<td></td>
<td>Grade 3 = 3</td>
<td>Grade 3 = 0</td>
<td>Grade 3 = 0</td>
</tr>
<tr>
<td>3D-CRT</td>
<td>201</td>
<td>201</td>
<td>201</td>
</tr>
<tr>
<td>Grade 0 = 0</td>
<td></td>
<td>Grade 0 = 44</td>
<td>Grade 0 = 44</td>
</tr>
<tr>
<td>Grade 1 = 83</td>
<td>Grade 1 = 121</td>
<td>Grade 1 = 121</td>
<td>Grade 1 = 121</td>
</tr>
<tr>
<td>Grade 2 = 109</td>
<td>Grade 2 = 33</td>
<td>Grade 2 = 33</td>
<td>Grade 2 = 33</td>
</tr>
<tr>
<td>Grade 3 = 9</td>
<td>Grade 3 = 3</td>
<td>Grade 3 = 3</td>
<td>Grade 3 = 3</td>
</tr>
</tbody>
</table>
Chest Wall Irradiation

Studies have examined the use of IMRT for chest wall irradiation in postmastectomy breast cancer patients. Available studies have focused on treatment planning and techniques to improve dose distributions to targeted tissues while reducing radiation to normal tissue and critical surrounding structures (e.g., heart, lung). In a study by Rudat et al (2011), treatment planning for chest wall irradiation with IMRT was compared with 3D-CRT in 20 postmastectomy patients.17 The authors reported IMRT significantly decreased heart and lung high-dose volume with a significantly improved conformity index compared with 3D-CRT. However, there were no significant differences in the homogeneity index. The authors noted longer-term prospective studies are needed to further assess cardiac toxicity and secondary lung cancer risk with multifield IMRT, which, while reducing high-dose volume, increases mean heart and lung dose. As noted, health outcomes were not reported in this study.

Rastogi et al (2018) published a retrospective study of 107 patients receiving RT postmastectomy to the left chest wall.18 Patients were treated with 3D-CRT (n=64) or IMRT (n=43). The planning target volume, homogeneity index, and conformity index for both groups were compared. Intensity-modulated radiotherapy had a significantly improved conformity index score (1.127) compared with 3D-CRT (1.254; p<.001), while results for both planning target volume (IMRT, 611.7 vs. 3D-CRT, 612.2; p=.55) and homogeneity index (IMRT, 0.094 vs. 3D-CRT, 0.096; p=.83) were comparable. Furthermore, secondary analyses showed that IMRT had significantly lower mean- and high-dose volumes to the heart and ipsilateral lung (p<.001 and p<.001, respectively), while 3D-CRT had superior low-dose volume (p<.001). The study was limited by its small population size and short follow-up.

Ho et al (2019) published the long-term pulmonary outcomes of a feasibility study of inverse-planned, multibeam IMRT in node-positive breast cancer patients receiving regional nodal irradiation.19 While the authors’ primary endpoint was feasibility, they also observed the incidence of radiation pneumonitis grade 3 or greater and changes in pulmonary function. The later endpoints were measured with the Common Terminology Criteria for Adverse Events and pulmonary function tests and community-acquired pneumonia questions. Of 104 completed follow-up procedures, the overall rate of respiratory toxicity was 10.6%, with 1 grade 3 radiation pneumonitis event.

Kivanc et al (2019)20 published a dosimetric comparison of 3D-CRT and IMRT for left-sided chest wall and lymphatic irradiation. The study compared 5 different techniques (i.e., 3D-CRT, forward-planned IMRT, inverse-planned IMRT [7- or 9-field], and hybrid inverse-planned/forward-planned IMRT) in 10 patients. Results revealed no differences among the techniques for doses received by 95% of the volume (D95%) of lymphatics. Forward-planned IMRT was associated with a significantly lower D95% dose to the chest wall-planning target volume as compared to the other techniques (p=.002). Of the evaluated techniques, the 9-field inverse-planned IMRT achieved the lowest volumes receiving higher doses. Overall, the dose homogeneity in chest wall-clinical target volume was improved with IMRT techniques versus 3D-CRT, especially 9-field inverse-planned IMRT. The hybrid IMRT plans had the advantages of both forward-planned and inverse-planned IMRT techniques.

Zhao et al (2021) retrospectively evaluated differences in survival rate, recurrence, and late adverse effects in 223 patients with clinical stage II to III breast cancer who underwent a modified radical mastectomy, had positive axillary lymph nodes, and received either IMRT of the chest wall and regional nodes contoured as a whole planning target volume (n=129) or conventional segmented 3D-CRT (n=94).21 The mean follow-up of the study was 104.3 months. The 8-year disease-free survival rates were significantly improved in the IMRT group (86% vs. 73.4%; p=.022); however, the OS rates were not significantly different between the groups (91.4% IMRT vs. 86.2% 3D-CRT; p=.530). The number of patients that suffered from chronic skin toxicity was 96 in the IMRT arm and 73 in the 3D-

Study Table

<table>
<thead>
<tr>
<th>Study</th>
<th>Acute Radiation Dermatitis</th>
<th>Acute Fatigue</th>
<th>Acute Breast Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>0.09</td>
<td>0.24</td>
<td>0.33</td>
</tr>
</tbody>
</table>

3D-CRT: 3-dimensional conformal radiotherapy; IMRT: intensity-modulated radiotherapy.
CRT arm (p=.577), with most patients experiencing grade 1 to 2 skin reactions. Similarly, there were no significant differences between the groups with regard to other late adverse effects including grade 1 to 2 ipsilateral lung injury (30.2% IMRT vs. 31.9% 3D-CRT; p=.788) and grade 1 to 2 ipsilateral shoulder mobility (46.5% IMRT vs. 47.9% 3D-CRT; p=.841). Additionally, the percentages of patients with left breast cancer who suffered from grade 1 to 2 cardiac injury in the IMRT and 3D-CRT groups were 30.6% and 25.3%, respectively.

Section Summary: Breast Cancer
There is evidence from RCTs that IMRT decreases acute skin toxicity more than 2D-RT for whole-breast irradiation. One RCT reported improvements in moist desquamation of skin but did not find differences in grade 3 or 4 skin toxicity, pain symptoms, or quality of life. Another RCT found a change in breast appearance but not quality of life. A third RCT reported no differences in cosmetic outcomes at 2 years for IMRT or 2D-RT. Dosimetry studies have demonstrated that IMRT reduces inhomogeneity of radiation dose, thus potentially providing a mechanism for reduced skin toxicity. However, because whole-breast RT is now delivered by 3D-CRT, these comparison data are of limited value.

Studies comparing IMRT with 3D-CRT include 1 RCT comparing IMRT with DIBH to 3D-CRT, 2 additional RCTs comparing IMRT to 3D-CRT in women who had undergone breast-conserving surgery (with 1 RCT evaluating simultaneous vs. sequential boost therapy), 2 nonrandomized comparative assessments of whole-breast IMRT, and studies on treatment planning for chest wall IMRT. These studies have suggested that IMRT might improve upon, or provide similar improvement in, clinical outcomes. The risk of secondary lung cancers needs further evaluation. Additionally, cardiac and pulmonary toxicity needs further evaluation. Despite this, evidence supports the use of IMRT for left-sided breast lesions in which alternative types of RT cannot avoid toxicity to the heart and lungs.

Lung Cancer
Clinical Context and Therapy Purpose
The purpose of IMRT in individuals who have lung cancer is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The following PICO was used to select literature to inform this review.

Populations
The relevant population of interest is individuals with lung cancer.

Interventions
The therapy being considered is IMRT. Radiotherapy is an integral component of the treatment of lung cancer; IMRT has been proposed as a method of RT that allows adequate radiation to the tumor while minimizing the radiation dose to surrounding normal tissues and critical structures.

Comparators
The following therapy is currently being used to make decisions about lung cancer: 3D-CRT.

Outcomes
The general outcomes of interest are OS, disease-specific survival, locoregional control, quality of life, and treatment-related adverse events.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs.
• In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
• To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
• Studies with duplicative or overlapping populations were excluded.

Review of Evidence

Systematic Reviews
Bezjak et al (2012) conducted a systematic review that examined the evidence on the use of IMRT for the treatment of lung cancer to quantify its potential benefits and make recommendations for RT programs considering adopting this technique in Ontario, Canada. This review consisted of 2 retrospective cohort studies (through March 2010) reporting on cancer outcomes, which was considered insufficient evidence on which to make evidence-based recommendations. These 2 cohort studies reported on data from the same institution; the study by Liao et al (2010; reported below) indicated that patients assessed in their cohort (N=409) were previously reported in another cohort involving 290 subjects, but it is not clear exactly how many patients were added in the second report. However, due to the known dosimetric properties of IMRT and extrapolating from clinical outcomes from other disease sites, reviewers recommended that IMRT be considered for lung cancer patients when the tumor is proximate to an organ at risk, where the target volume includes a large volume of an organ at risk, or where dose escalation would be potentially beneficial while minimizing normal tissue toxicity.

Randomized Controlled Trials
Louie et al (2022) published an RCT that evaluated whether esophageal-sparing IMRT (n=41) achieves a clinically relevant reduction in esophageal adverse events compared with standard RT (n=39) in patients with stage III/IV incurable non-small-cell lung cancer (NSCLC). Results demonstrated that the occurrence of the primary outcome, which measured esophageal quality of life 2 weeks following RT using the esophageal cancer subscale of the Functional Assessment of Cancer Therapy: Esophagus questionnaire, did not significantly differ between treatment groups. However, symptomatic RT-associated esophagitis occurred in 11 patients who received standard RT compared to 1 patient who received esophageal-sparing IMRT (p=.002). Overall survival was similar with esophageal-sparing IMRT (median, 8.7 months; 95% CI, 5.1 to 10.2 months) and standard RT (median, 8.6 months; 95% CI, 5.7 to 15.6; p=.62).

Nonrandomized Comparative Studies
Liao et al (2010) compared patients who received RT, along with chemotherapy, for inoperable NSCLC at a single institution. This study retrospectively compared 318 patients who received CT plus 3D-CRT and chemotherapy from 1999 to 2004 (mean follow-up, 2.1 years) with 91 patients who received 4-dimensional CT plus IMRT and chemotherapy from 2004 to 2006 (mean follow-up, 1.3 years). Both groups received a median dose of 63 Gy. Disease endpoints were locoregional progression, distant metastasis, and OS. Disease covariates were gross tumor volume, nodal status, and histology. The toxicity endpoint was grade 3, 4, or 5 radiation pneumonitis; toxicity covariates were gross tumor volume, smoking status, and dosimetric factors. Using Cox proportional hazards models, the HRs for IMRT were less than 1 for all disease endpoints; the difference was significant only for OS. The median survival was 1.40 years for the IMRT group and 0.85 years for the 3D-CRT group. The toxicity rate was significantly lower in the IMRT group than in the 3D-CRT group. The volume of the lung receiving 20 Gy was higher in the 3D-CRT group and was a factor in determining toxicity. Freedom from distant metastasis was nearly identical in both groups. The authors concluded that treatment with 4-dimensional CT plus IMRT was at least as good as that with 3D-CRT in terms of the rates of freedom from locoregional progression and metastasis. This retrospective study found significant reductions in toxicity and improvement in survival. The nonrandomized, retrospective aspects of this study from a single center limit the ability to draw definitive treatment conclusions about IMRT.
Shirvani et al (2013) reported on a U.S. cancer center study that assessed the use of definitive IMRT in limited-stage small-cell lung cancer treated with definitive RT.25 In this study of 223 patients treated from 2000 to 2009, 104 received IMRT and 119 received 3D-CRT. Median follow-up times were 22 months (range, 4 to 83 months) for IMRT and 27 months (range, 2 to 147 months) for 3D-CRT. In both multivariable and propensity score-matched analyses, OS and disease-free survival did not differ between IMRT and 3D-CRT. However, rates of esophagitis-related percutaneous feeding tube placements were lower with IMRT (5%) than with 3D-CRT (17%; p=.005).

Harris et al (2014) compared the effectiveness of IMRT, 3D-CRT, or 2D-RT in treating stage III NSCLC using a cohort of patients from the Surveillance, Epidemiology, and End Results-Medicare database treated between 2002 and 2009.26 Overall survival was better with IMRT and 3D-CRT than with 2D-CRT. In univariate analysis, improvements in OS (HR, 0.90; p=.02) and cancer-specific survival (HR, 0.89; p=.02) were associated with IMRT. However, IMRT was similar to 3D-CRT after controlling for confounders in OS (HR, 0.94; p=.23) and cancer-specific survival (HR, 0.94; p=.28). On multivariate analysis, toxicity risks with IMRT and 3D-CRT were also similar. Likewise, results were similar for the propensity score-matched models and the adjusted models.

Ling et al (2016) compared IMRT with 3D-CRT in patients who had stage III NSCLC treated with definitive RT.27 In this study of 145 consecutive patients treated between 1994 and 2014, the choice of treatment was at the treating physician’s discretion, but all IMRT treatments were performed in the last 5 years. The authors found no significant differences between the groups for any measure of acute toxicity (grade ≥ 2 esophagitis, grade ≥ 2 pneumonitis, percutaneous endoscopic gastrostomy, narcotic use, hospitalization, or weight loss). There were no significant differences in oncologic and survival outcomes.

Chun et al (2017) reported on a secondary analysis of a trial that assessed the addition of cetuximab to a standard chemotherapy regimen and radiation dose escalation.28 Use of IMRT or 3D-CRT was a stratification factor in the 2 x 2 design. Of 482 patients in the trial, 53% were treated with 3D-CRT and 47% were treated with IMRT, though treatment allocation was not randomized. Compared with the 3D-CRT group, the IMRT group had larger planning treatment volumes (486 mL vs. 427 mL; p=.005), larger planning treatment volume/volume of lung ratio (median, 0.15 vs. 0.13; p=.13), and more patients with stage IIIB disease (38.6% vs. 30.3%; p=.056). Even though there was an increase in treatment volume, IMRT was associated with less grade 3 or greater pneumonitis (3.5% vs. 7.9%; p=.039) and a reduced risk (odds ratio [OR], 0.41; 95% CI, 0.171 to 0.986; p=.046), with no significant differences between the groups in 2-year OS, progression-free survival, local failure, or distant metastasis-free survival.

Koshy et al (2017) published a retrospective cohort analysis of patients with stage III NSCLC, comparing those treated with IMRT and with non-IMRT.29 Using the National Cancer Database, 7493 patients treated between 2004 and 2011 were assessed (Table 3). Main outcomes were OS and the likelihood and effects of radiation treatment interruption, defined as a break in the treatment of 4 or more days. Overall survival for non-IMRT and IMRT patients, respectively, were 18.2 months and 20 months (p<.001) (Table 4). Median survival with and without a radiation treatment interruption was 16.1 and 19.8 months, respectively (p<.001), and IMRT significantly reduced the likelihood of a radiation treatment interruption (OR, 0.84; p=.04). The study was limited by unavailable information regarding RT planning and potential mechanisms affecting survival, and by a possible prescription bias, causing patients with better performance status to be given IMRT.

Appel et al (2019) conducted another retrospective, single institution cohort evaluating the impact of radiation technique on pathological and clinical outcomes in 74 patients with locally advanced NSCLC managed with a trimodality strategy.30 Key study characteristics and results are presented in Tables 3 and 4. The 2-year overall local control rate was 81.6% (95% CI, 69% to 89.4%), disease-free survival was 58.3% (95% CI, 45.5% to 69%), and 3-year OS was 70% (95% CI, 57% to 80%). When comparing radiation techniques for these outcomes, there were no significant differences in local
control (p=.94), disease-free survival (p=.33), or OS (p=.72). Grade 2 esophageal toxicity was non-
significantly reduced with IMRT as compared to 3D-CRT (32% vs. 37%; p=.66). As with other studies,
the retrospective design and single-center nature of this cohort make generalizability of the results to
other cancer centers limited.

Table 3. Summary of Key Observational Comparative Study Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Country</th>
<th>Dates</th>
<th>Participants</th>
<th>Treatment</th>
<th>Comparator</th>
<th>FU</th>
</tr>
</thead>
</table>

3D-CRT; 3-dimensional conformal radiotherapy; FU: follow-up; IMRT: intensity-modulated radiotherapy.

Table 4. Summary of Key Observational Comparative Study Results

<table>
<thead>
<tr>
<th>Study</th>
<th>OS</th>
<th>Major Pathologic Response Rate</th>
<th>Pathologic Complete Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMRT</td>
<td>20.0</td>
<td>65.2%</td>
<td>34.8%</td>
</tr>
<tr>
<td>Non-IMRT</td>
<td>18.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td><.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appel et al (2019)30.</td>
<td>2-year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMRT % (95% CI)</td>
<td>85% (60 to 95)</td>
<td>62.7%</td>
<td>33.3%</td>
</tr>
<tr>
<td>3D-CRT % (95% CI)</td>
<td>82% (68 to 90)</td>
<td>.72</td>
<td>.83</td>
</tr>
<tr>
<td>p</td>
<td>.72</td>
<td></td>
<td>.9</td>
</tr>
</tbody>
</table>

3D-CRT; 3-dimensional conformal radiotherapy; CI: confidence interval; IMRT: intensity-modulated radiotherapy; OS: overall survival.

Section Summary: Lung Cancer
For the treatment of lung cancer, 1 RCT was identified that compared IMRT with 3D-CRT, but the
focus was on the development of esophageal adverse events only. Dosimetry studies have reported
that IMRT can reduce radiation exposure to critical surrounding structures, especially for large lung
tumors. Based on available comparative studies, IMRT appears to produce survival outcomes comparable with those of 3D-CRT, with a reduction in adverse events.

Supplemental Information
The purpose of the following information is to provide reference material. Inclusion does not imply
endorsement or alignment with the evidence review conclusions.

Clinical Input From Physician Specialty Societies and Academic Medical Centers
While the various physician specialty societies and academic medical centers may collaborate with
and make recommendations during this process, through the provision of appropriate reviewers,
input received does not represent an endorsement or position statement by the physician specialty
societies or academic medical centers, unless otherwise noted.

2012 Input
In response to requests, input was received from 2 physician specialty societies and 3 academic
medical centers (3 reviewers) while this policy was under review in 2012. There was a near-uniform
consensus in responses that whole-breast and lung intensity-modulated radiotherapy (IMRT) is
appropriate in select patients with breast and lung cancer. Respondents noted IMRT might reduce
the risk of cardiac, pulmonary, or spinal cord exposure to radiation in some cancers such as those
involving the left breast or large cancers of the lung. Respondents also indicated whole-breast IMRT
might reduce skin reactions and potentially improve cosmetic outcomes. Partial-breast IMRT was not
supported by respondents, and the response was mixed on the value of chest wall IMRT postmastectomy.
2010 Input
In response to requests, input was received from 1 physician specialty society and 2 academic medical centers (3 reviewers) while this policy was under review in 2010. Input suggested that IMRT is used in select patients with breast cancer (e.g., some cancers involving the left breast) and lung cancer (e.g., some large cancers).

Practice Guidelines and Position Statements
Guidelines or position statements will be considered for inclusion in ‘Supplemental Information’ if they were issued by, or jointly by, a US professional society, an international society with US representation, or National Institute for Health and Care Excellence (NICE). Priority will be given to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.

American Society of Clinical Oncology/American Society for Radiation Oncology/Society of Surgical Oncology
Breast Cancer
In 2016, the American Society of Clinical Oncology (ASCO), American Society for Radiation Oncology, and the Society of Surgical Oncology developed a focused update of a prior ASCO guideline related to the use of postmastectomy radiotherapy (RT). The Expert Panel unanimously agreed that "available evidence shows that post mastectomy RT reduces the risk of locoregional failure, any recurrence, and breast cancer mortality for patients with T1 to T2 breast cancer with 1 to 3 positive axillary nodes. However, some subsets of these patients are likely to have such a low risk of locoregional failure that the absolute benefit of post mastectomy RT is outweighed by its potential toxicities." Additionally, the guideline noted that "the decision to recommend post mastectomy RT requires a great deal of clinical judgment."

American Society for Radiation Oncology
Breast Cancer
In 2018, the American Society for Radiation Oncology published evidence-based guidelines on whole-breast irradiation with or without low axilla inclusion. The guidance recommended a "preferred" radiation dosage of "4000 cGy [centigray] in 15 fractions or 4250 cGy in 16 fractions."32,

Lung Cancer
In 2018, the American Society for Radiation Oncology also published evidence-based guidelines on palliative RT for non-small-cell lung cancer (NSCLC). The guidelines recommended "moderately hypofractionated palliative thoracic radiation therapy" with chemotherapy as palliative care for stage III and IV incurable NSCLC.33,

In 2020, the American Society for Radiation Oncology also published evidence-based guidelines RT for small-cell lung cancer (SCLC).34 The guidelines listed IMRT as one of several treatment strategies for patients with pathologically confirmed limited stage-SCLC with no evidence of M1 disease. The guideline also notes that the use of "modulated techniques (e.g., IMRT or volumetric modulated arc therapy) over 3-dimensional conformal treatment is recommended in an attempt to decrease normal tissue toxicities...however...there are limited data on advanced RT techniques in SCLC treatment."

National Comprehensive Cancer Network
Breast Cancer
Current National Comprehensive Cancer Network (NCCN) guidelines (v.4.2023) for breast cancer indicate the importance of individualizing RT planning and delivery. Specifically, the guidelines note that "treatment planning should be optimized to maximally improve homogeneity across the target volume while minimizing dose to organs at risk." A related discussion section in this guideline that has an update in progress states the following: "Computed tomography (CT)-based treatment planning is encouraged to delineate target volumes and adjacent organs at risk. Improved target dose
homogeneity and sparing of normal tissues can be accomplished utilizing various "compensators such as wedges, forward planning using segments, and IMRT. Respiratory control techniques including deep inspiration breath-hold and prone positioning may be used to try to further reduce dose in adjacent normal tissues, such as the heart and lung." The guidelines indicate chest wall and regional lymph node irradiation may be appropriate postmastectomy in select patients, but IMRT is not mentioned as a technique for irradiation in these circumstances.

Lung Cancer

Current NCCN guidelines (v.3.2023) for NSCLC indicate that "More advanced technologies are appropriate when needed to deliver curative RT safely. These technologies include (but are not limited to) ... IMRT/VMAT [volumetric modulated arc therapy]... Nonrandomized comparisons of using advanced technologies versus older techniques demonstrate reduced toxicity and improved survival."36.

Current NCCN guidelines (v.3.2023) for SCLC indicate that "Use of more advanced technologies is appropriate when needed to deliver adequate tumor doses while respecting normal tissue dose constraints."37. Among the technologies listed is IMRT. The guidelines also state that "IMRT is preferred over 3D [3-dimensional] conformal external-beam RT on the basis of reduced toxicity in the setting of concurrent chemotherapy/RT."

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Some local Medicare Part B carriers have indicated that IMRT for the lung is considered medically necessary. These documents do not detail the rationale for this conclusion.

Ongoing and Unpublished Clinical Trials

Some currently ongoing and unpublished trials that might influence this review are listed in Table 5.

Table 5. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT03786354</td>
<td>Prospective Evaluation of Shoulder Morbidity in Patients with Lymph-Node</td>
<td>60</td>
<td>Dec 2020</td>
</tr>
<tr>
<td></td>
<td>Positive Breast Cancer Receiving Regional Nodal Irradiation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

References

Documentation for Clinical Review

Please provide the following documentation:

- (click here >>>) Radiation Oncology – Prior Authorization fax form
- (click here >>>) Radiation Oncology – Post Service fax form

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy.

The following codes are included below for informational purposes. Inclusion or exclusion of a code(s) does not constitute or imply member coverage or provider reimbursement policy. Policy Statements are intended to provide member coverage information and may include the use of some codes for clarity. The Policy Guidelines section may also provide additional information for how to interpret the Policy Statements and to provide coding guidance in some cases.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT*</td>
<td>77014</td>
<td>Computed tomography guidance for placement of radiation therapy fields</td>
</tr>
<tr>
<td></td>
<td>77261</td>
<td>Therapeutic radiology treatment planning; simple</td>
</tr>
<tr>
<td></td>
<td>77262</td>
<td>Therapeutic radiology treatment planning; intermediate</td>
</tr>
<tr>
<td></td>
<td>77263</td>
<td>Therapeutic radiology treatment planning; complex</td>
</tr>
<tr>
<td></td>
<td>77293</td>
<td>Respiratory motion management simulation (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>77300</td>
<td>Basic radiation dosimetry calculation, central axis depth dose calculation, TDF, NSD, gap calculation, off axis factor, tissue inhomogeneity factors, calculation of non-ionizing radiation surface and depth dose, as required during course of treatment, only when prescribed by the treating physician</td>
</tr>
<tr>
<td></td>
<td>77301</td>
<td>Intensity modulated radiotherapy plan, including dose-volume histograms for target and critical structure partial tolerance specifications</td>
</tr>
<tr>
<td></td>
<td>77306</td>
<td>Teletherapy isodose plan; simple (1 or 2 unmodified ports directed to a single area of interest), includes basic dosimetry calculation(s)</td>
</tr>
<tr>
<td></td>
<td>77307</td>
<td>Teletherapy isodose plan; complex (multiple treatment areas, tangential ports, the use of wedges, blocking, rotational beam, or special beam considerations), includes basic dosimetry calculation(s)</td>
</tr>
<tr>
<td></td>
<td>77331</td>
<td>Special dosimetry (e.g., TLD, microdosimetry) (specify), only when prescribed by the treating physician</td>
</tr>
<tr>
<td></td>
<td>77332</td>
<td>Treatment devices, design and construction; simple (simple block, simple bolus)</td>
</tr>
<tr>
<td></td>
<td>77334</td>
<td>Treatment devices, design and construction; complex (irregular blocks, special shields, compensators, wedges, molds or casts)</td>
</tr>
<tr>
<td></td>
<td>77336</td>
<td>Continuing medical physics consultation, including assessment of treatment parameters, quality assurance of dose delivery, and review of patient treatment documentation in support of the radiation oncologist, reported per week of therapy</td>
</tr>
<tr>
<td></td>
<td>77338</td>
<td>Multi-leaf collimator (MLC) device(s) for intensity modulated radiation therapy (IMRT), design and construction per IMRT plan</td>
</tr>
<tr>
<td></td>
<td>77370</td>
<td>Special medical radiation physics consultation</td>
</tr>
<tr>
<td>Type</td>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>77385</td>
<td>Intensity modulated radiation treatment delivery (IMRT), includes guidance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and tracking, when performed; simple</td>
</tr>
<tr>
<td></td>
<td>77386</td>
<td>Intensity modulated radiation treatment delivery (IMRT), includes guidance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and tracking, when performed; complex</td>
</tr>
<tr>
<td></td>
<td>77387</td>
<td>Guidance for localization of target volume for delivery of radiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>treatment, includes intrafraction tracking, when performed</td>
</tr>
<tr>
<td></td>
<td>77417</td>
<td>Therapeutic radiology port image(s)</td>
</tr>
<tr>
<td></td>
<td>77427</td>
<td>Radiation treatment management, 5 treatments</td>
</tr>
<tr>
<td></td>
<td>77470</td>
<td>Special treatment procedure (e.g., total body irradiation, hemibody</td>
</tr>
<tr>
<td></td>
<td></td>
<td>radiation, per oral or endocavitary irradiation)</td>
</tr>
<tr>
<td></td>
<td>G6001</td>
<td>Ultrasonic guidance for placement of radiation therapy fields</td>
</tr>
<tr>
<td></td>
<td>G6002</td>
<td>Stereoscopic x-ray guidance for localization of target volume for the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>delivery of radiation therapy</td>
</tr>
<tr>
<td></td>
<td>G6015</td>
<td>Intensity modulated treatment delivery, single or multiple fields/arcs,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>via narrow spatially and temporally modulated beams, binary, dynamic MLC,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>per treatment session</td>
</tr>
<tr>
<td></td>
<td>G6016</td>
<td>Compensator-based beam modulation treatment delivery of inverse planned</td>
</tr>
<tr>
<td></td>
<td></td>
<td>treatment using 3 or more high resolution (milled or cast) compensator,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>convergent beam modulated fields, per treatment session</td>
</tr>
<tr>
<td></td>
<td>G6017</td>
<td>Intra-fraction localization and tracking of target or patient motion during</td>
</tr>
<tr>
<td></td>
<td></td>
<td>delivery of radiation therapy (e.g., 3D positional tracking, gating, 3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>surface tracking), each fraction of treatment</td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/30/2015</td>
<td>Policy title change from Intensity Modulated Radiation Therapy (IMRT) BCBSA Medical Policy adoption</td>
</tr>
<tr>
<td>10/01/2016</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>09/01/2017</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>09/01/2018</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>09/01/2019</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>06/01/2020</td>
<td>Administrative update. Policy statement, guidelines and literature updated.</td>
</tr>
<tr>
<td>10/01/2020</td>
<td>Annual review. No change to policy statement. Literature review updated. Coding update.</td>
</tr>
<tr>
<td>08/01/2021</td>
<td>Annual review. No change to policy statement. Policy guidelines updated.</td>
</tr>
<tr>
<td>12/01/2021</td>
<td>Administrative update. Policy statement, guidelines and literature updated.</td>
</tr>
<tr>
<td>08/01/2022</td>
<td>Annual review. No change to policy statement.</td>
</tr>
<tr>
<td>09/01/2022</td>
<td>Administrative update. Policy statement and literature updated.</td>
</tr>
<tr>
<td>02/01/2023</td>
<td>Annual review. Policy statement and guidelines updated.</td>
</tr>
<tr>
<td>06/01/2023</td>
<td>Administrative update.</td>
</tr>
<tr>
<td>09/01/2023</td>
<td>Administrative update. No change to policy statement. Literature review updated.</td>
</tr>
<tr>
<td>03/01/2024</td>
<td>Annual review. No change to policy statement.</td>
</tr>
</tbody>
</table>
Definitions of Decision Determinations

Medically Necessary: Services that are Medically Necessary include only those which have been established as safe and effective, are furnished under generally accepted professional standards to treat illness, injury or medical condition, and which, as determined by Blue Shield, are: (a) consistent with Blue Shield medical policy; (b) consistent with the symptoms or diagnosis; (c) not furnished primarily for the convenience of the patient, the attending Physician or other provider; (d) furnished at the most appropriate level which can be provided safely and effectively to the patient; and (e) not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of the Member’s illness, injury, or disease.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements and Feedback (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member’s health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member’s eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department at (800) 541-6652, or the Transplant Case Management Department at (800) 637-2066 ext. 3507708 or visit the provider portal at www.blueshieldca.com/provider.

We are interested in receiving feedback relative to developing, adopting, and reviewing criteria for medical policy. Any licensed practitioner who is contracted with Blue Shield of California or Blue Shield of California Promise Health Plan is welcome to provide comments, suggestions, or concerns. Our internal policy committees will receive and take your comments into consideration.

For utilization and medical policy feedback, please send comments to: MedPolicy@blueshieldca.com

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.
POLICY STATEMENT

BEFORE

Red font: Verbiage removed

Intensity-Modulated Radiotherapy of the Breast and Lung 8.01.46

Policy Statement:

I. Intensity-modulated radiotherapy (IMRT) using a hypofractionated regimen (up to 16 treatments and up to 8 more if a boost is needed) may be considered **medically necessary** as a technique to deliver whole-breast irradiation in individuals receiving treatment when all of the following conditions are met:
 A. Left-sided breast cancer
 B. Prior breast-conserving surgery
 C. Documentation of all of the following:
 1. Significant cardiac radiation exposure cannot be avoided using alternative radiotherapy
 2. IMRT dosimetry demonstrates significantly reduces cardiac target volume radiation exposure as documented by **both** of the following:
 a. With 3D-CRT, the target volume coverage results in cardiac radiation exposure that is expected to be greater than or equal to 25 gray (Gy) to 10 cm³ or more of the heart (V25 ≥10 cm³), despite the use of a complex positioning device (e.g., Vac-Lok”)
 b. With IMRT, there is a reduction in the absolute heart volume receiving 25 Gy or more by at least 20% (e.g., volume predicted to receive 25 Gy by 3D-CRT is 20 cm³, and the volume predicted by IMRT is ≤16 cm³)

II. IMRT using conventional fractionation may be considered **medically necessary** if there are contraindications to hypofractionation and documentation of the contraindication to hypofractionation is provided.

III. IMRT may be considered **medically necessary** when all of the following conditions are met:
 A. Individual has large breasts (> 500 cc)

AFTER

Blue font: Verbiage Changes/Additions

Intensity-Modulated Radiotherapy of the Breast and Lung 8.01.46

Policy Statement:

I. Intensity-modulated radiotherapy (IMRT) using a hypofractionated regimen (up to 16 treatments and up to 8 more if a boost is needed) may be considered **medically necessary** as a technique to deliver whole-breast irradiation in individuals receiving treatment when all of the following conditions are met:
 A. Left-sided breast cancer
 B. Prior breast-conserving surgery
 C. Documentation of both of the following:
 1. Significant cardiac radiation exposure cannot be avoided using alternative radiotherapy
 2. IMRT dosimetry demonstrates significantly reduces cardiac target volume radiation exposure as documented by **both** of the following:
 a. With 3D-CRT, the target volume coverage results in cardiac radiation exposure that is expected to be greater than or equal to 25 gray (Gy) to 10 cm³ or more of the heart (V25 ≥10 cm³), despite the use of a complex positioning device (e.g., Vac-Lok”)
 b. With IMRT, there is a reduction in the absolute heart volume receiving 25 Gy or more by at least 20% (e.g., volume predicted to receive 25 Gy by 3D-CRT is 20 cm³, and the volume predicted by IMRT is ≤16 cm³)

II. IMRT using conventional fractionation may be considered **medically necessary** if there are contraindications to hypofractionation and documentation of the contraindication to hypofractionation is provided.

III. IMRT may be considered **medically necessary** when all of the following conditions are met:
 A. Individual has large breasts (> 500 cc)
POLICY STATEMENT

<table>
<thead>
<tr>
<th>BEFORE Red font: Verbiage removed</th>
<th>AFTER Blue font: Verbiage Changes/Additions</th>
</tr>
</thead>
</table>
| B. 3-dimensional conformal radiotherapy dosimetry results in hot spots (focal regions with dose variation greater than 10% of target)
C. Hot spots can be avoided with IMRT | B. 3-dimensional conformal radiotherapy dosimetry results in hot spots (focal regions with dose variation greater than 10% of target)
C. Hot spots can be avoided with IMRT |

IV. IMRT may be considered *medically necessary* as a technique to deliver radiotherapy in individuals with lung cancer when all of the following conditions are met:
A. Radiotherapy is being given with curative intent
B. Three-dimensional (3-D) conformal radiotherapy will expose greater than 35% of normal lung tissue to more than a 20-gray (Gy) dose-volume (V20)
C. IMRT dosimetry demonstrates a reduction in the V20 to at least 10% below the V20 that is achieved with the 3-dimensional plan (e.g., from 40% down to 30% or lower)

V. IMRT is considered *investigational* as a technique to deliver radiotherapy in individuals receiving palliative treatment for lung cancer.

VI. Intensity modulated radiation therapy to breast or lung cancers may be considered *medically necessary* when one or more of the following conditions are present:
A. The target volume is in close proximity to critical structures that must be protected and both of the following: * (see source below)
 1. Planned 3D-CRT exposure to critical adjacent structures is above normal tissue constraints
 2. Planned IMRT exposure to these critical adjacent structures does not exceed normal tissue constraints
B. The same or immediately adjacent area has been previously irradiated and abutting portals must be established with high precision

B. The target volume is in close proximity to critical structures that must be protected and both of the following: * (see source below)
 1. Planned 3D-CRT exposure to critical adjacent structures is above normal tissue constraints
 2. Planned IMRT exposure to these critical adjacent structures does not exceed normal tissue constraints
B. The same or immediately adjacent area has been previously irradiated and abutting portals must be established with high precision
<table>
<thead>
<tr>
<th>BEFORE (Red font: Verbiage removed)</th>
<th>AFTER (Blue font: Verbiage Changes/Additions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII. IMRT is considered investigational for the treatment of breast or lung cancer for all indications not meeting the criteria above, including palliative care when criteria for approval are not met.</td>
<td>VII. IMRT is considered investigational for the treatment of breast or lung cancer for all indications not meeting the criteria above, including palliative care when criteria for approval are not met.</td>
</tr>
<tr>
<td>Image Guided Radiation Therapy (IGRT)</td>
<td>Image Guided Radiation Therapy (IGRT)</td>
</tr>
<tr>
<td>VIII. IGRT may be considered medically necessary as an approach to delivering radiotherapy when combined with any of the following treatments (see Policy Guidelines):</td>
<td>VIII. IGRT may be considered medically necessary as an approach to delivering radiotherapy when combined with any of the following treatments (see Policy Guidelines):</td>
</tr>
<tr>
<td>A. Intensity-modulated radiotherapy (IMRT)</td>
<td>A. Intensity-modulated radiotherapy (IMRT)</td>
</tr>
<tr>
<td>B. Stereotactic body radiation therapy (SBRT)</td>
<td>B. Stereotactic body radiation therapy (SBRT)</td>
</tr>
<tr>
<td>C. Proton delivery</td>
<td>C. Proton delivery</td>
</tr>
<tr>
<td>IX. IGRT is considered investigational as an approach to delivering radiotherapy when combined with any of the following treatments:</td>
<td>IX. IGRT is considered investigational as an approach to delivering radiotherapy when combined with any of the following treatments:</td>
</tr>
<tr>
<td>A. Conventional three-dimensional conformal radiation therapy (3D CRT) (see Policy Guidelines for considerations)</td>
<td>A. Conventional three-dimensional conformal radiation therapy (3D CRT) (see Policy Guidelines for considerations)</td>
</tr>
<tr>
<td>B. Stereotactic radiosurgery (SRS)</td>
<td>B. Stereotactic radiosurgery (SRS)</td>
</tr>
<tr>
<td>C. Electronic brachytherapy</td>
<td>C. Electronic brachytherapy</td>
</tr>
</tbody>
</table>