Transcatheter arterial chemoembolization (TACE) of the liver is a proposed alternative to conventional systemic or intra-arterial chemotherapy, and to various nonsurgical ablative techniques, to treat resectable and nonresectable tumors. TACE combines the infusion of chemotherapeutic drugs with particle embolization. Tumor ischemia secondary to the embolization raises the drug concentration compared with infusion alone, extending the retention of the chemotherapeutic agent and decreasing systemic toxicity. The liver is especially amenable to such an approach, given its distinct lobular anatomy, the existence of 2 independent blood supplies, and the ability of healthy hepatic tissue to grow and thus compensate for tissue mass lost during chemoembolization.

Related Policies

- Cryosurgical Ablation of Primary or Metastatic Liver Tumors
- Liver Transplant
- Microwave Tumor Ablation
- Radioembolization for Primary and Metastatic Tumors of the Liver
- Radiofrequency Ablation of Miscellaneous Solid Tumors Excluding Liver Tumors
- Radiofrequency Ablation of Primary of Metastatic Liver Tumors

Policy

Transcatheter hepatic arterial chemoembolization may be considered medically necessary for treatment of any the following:

- Hepatocellular cancer when all of the following are met:
 - Hepatocellular cancer is unresectable but confined to the liver
 - Patient is not a candidate for liver transplantation* (see exception below)
 - Not associated with portal vein thrombosis
- Hepatocellular cancer as a bridge to transplant* when all of the following are met:
 - Intent is to prevent further tumor growth and to maintain a patient’s candidacy for liver transplant
 - Presence of hepatic tumor(s) meeting one of the following:
 - Single tumor less than or equal to 5 cm
• Presence of no more than three tumors each less than three cm in size
 o Absence of extrahepatic disease or vascular invasion
 o Child-Pugh score of either A or B
• Liver metastases from neuroendocrine tumor when all of the following criteria are met:
 o Patient has symptomatic disease (e.g., wheezing, flushing of the skin, abdominal cramps, diarrhea, heart disease)
 o Systems persist despite systemic therapy (e.g., Octreotide therapy)
 o Patient is not a candidate for hepatic surgical resection
• Liver metastasis from liver-dominant metastatic uveal (ocular) melanoma

Transcatheter hepatic arterial chemoembolization is considered investigational for treatment of any of the following:
• As neoadjuvant or adjuvant therapy in hepatocellular cancer that is considered resectable
• Hepatocellular tumors prior to liver transplantation except as indicated in the medically necessary criteria above
• Hepatocellular cancer not meeting the medically necessary criteria above, including recurrent Hepatocellular cancer
• Liver metastases from any other types of tumors with the exception of neuroendocrine tumor or liver-dominant metastatic uveal (ocular) melanoma
• Unresectable cholangiocarcinoma

Policy Guidelines

Downstaging (downsizing) therapy is used to reduce the tumor burden in selected patients with more advanced HCC (without distant metastasis) that are beyond the accepted transplant criteria.

Child-Pugh Score - Objective classification of operative risk in the setting of HCC based upon chemical and biochemical parameters.

Class A: Good operative risk
Class B: Moderate operative risk
Class C: Poor operative risk

Neuroendocrine Tumors

Neuroendocrine tumors (NETs) may be referred to by their anatomical location (e.g., pulmonary neuroendocrine tumor, gastroenteropancreatic neuroendocrine tumor). Neuroendocrine tumors include the following:

• Carcinoid tumors
• Islet cell tumors (or pancreatic endocrine tumors)
• Neuroendocrine unknown primary
• Adrenal gland tumors
• Pheochromocytoma/paraganglioma
• Poorly differentiated (high grade or anaplastic)/small cell
• Multiple endocrine neoplasia, Type 1 (also known as MEN-1 syndrome or Wermer’s syndrome)
• Multiple endocrine neoplasia, Type 2a or b (also known as pheochromocytoma and amyloid producing medullary thyroid carcinoma, PTC syndrome, or Sipple syndrome)

Symptomatic disease from neuroendocrine tumors may include hot, red flushing of the face, severe and debilitating diarrhea, asthma attacks, palpitations, low blood pressure, fatigue, dizziness, and weakness. Extreme symptoms may include heart disease, bronchial constriction, and bowel obstruction.

Systemic therapies for neuroendocrine tumors vary depending on the location and characteristics. Therapies may include, but are not limited to: octreotide, interferon, cytotoxic chemotherapy, angiogenesis inhibitors, and epidermal growth factor inhibitors.

Coding

One of the following CPT codes may be used to describe the TACE procedure:

- **37243**: Vascular embolization or occlusion, inclusive of all radiological supervision and interpretation, intraprocedural road mapping, and imaging guidance necessary to complete the intervention; for tumors, organ ischemia, or infarction (new code 1/1/14)
- **75894**: Transcatheter therapy, embolization, any method, radiological supervision and interpretation (Note: this code cannot be reported with code 37243)

The following HCPCS code may be used to describe chemotherapy administration/chemoembolization:

- **Q0083**: Chemotherapy administration by other than infusion technique only

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program (FEP)) prohibit Plans from denying Food and Drug Administration (FDA) - approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

Rationale

Background

Transcatheter arterial chemoembolization (TACE) of the liver has been associated with potentially life-threatening toxicities and complications, including severe postembolization syndrome, hepatic insufficiency, abscess, or infarction. TACE has been...
investigated to treat resectable, unresectable, and recurrent HCC, cholangiocarcinoma, liver metastases, and in the liver transplant setting. Treatment alternatives include resection when possible, chemotherapy administered systemically or by hepatic artery infusion (HAI). HAI involves continuous infusion of chemotherapy with an implanted pump, while TACE is administered episodically. Also, HAI does not involve the use of embolic material.

The TACE procedure requires hospitalization for placement of the hepatic artery catheter and workup to establish eligibility for chemoembolization. Before the procedure, the patency of the portal vein must be demonstrated to ensure an adequate posttreatment hepatic blood supply. With the patient under local anesthesia and mild sedation, a superselective catheter is inserted via the femoral artery and threaded into the hepatic artery. Angiography is then performed to delineate the hepatic vasculature, followed by injection of the embolic chemotherapy mixture. Embolic material varies but may include a viscous collagen agent, polyvinyl alcohol particles, or ethiodized oil. Typically, only 1 lobe of the liver is treated during a single session, with subsequent embolization procedures scheduled from 5 days to 6 weeks later. In addition, because the embolized vessel recanalizes, chemoembolization can be repeated as many times as necessary.

The most recent literature review was performed for the period of August 2013 through September 17, 2014. The following is a summary of key findings to date.

This policy was originally based on a 2000 TEC Assessment¹ that offered the following observations and conclusions:

Five randomized trials focused on the use of transcatheter arterial chemoembolization (TACE) to treat resectable hepatocellular carcinoma (HCC), either in the adjuvant or neoadjuvant setting. These trials reported inconsistent results in terms of survival rates. Treatment-related morbidity and mortality were not reported consistently across studies.

No randomized study focused on TACE to treat postoperative recurrent HCC, and data were insufficient to permit scientific conclusions on its effectiveness in this setting.

Three randomized trials focused on the use of TACE to treat unresectable HCC compared with supportive care. Survival did not differ significantly among groups in any of the trials.

There were no controlled trials focusing on patients with unresectable hepatic metastases from colon cancer. The outcomes of TACE in the available uncontrolled series appeared similar to outcomes reported of hepatic artery infusion and systemic chemotherapy. The available data also did not show superiority for either TACE or alternatives with respect to complication rates or treatment-related mortality.

There were no controlled trials comparing TACE with alternatives in the treatment of hepatic metastases from carcinoid or islet cell tumors. While 3 case series reported that TACE reduced symptoms due to excess hormone production, there was no information regarding the efficacy of medical management to control symptoms. Data were also inadequate to permit conclusions regarding tumor response rates and survival.

The role of TACE in the management of patients with HCC who are awaiting liver transplantation is an indication that was not addressed in the 2000 TEC Assessment.
TACE for Unresectable HCC

Since the 2000 TEC Assessment, additional randomized, controlled trials (RCTs) have compared TACE to conservative (i.e., symptomatic) treatment in patients with unresectable HCC, as well as TACE versus systemic chemotherapy. Several case series and a cohort study are also outlined in the following sections.

A 2011 systematic review included 9 trials with 645 patients treated with TACE or transarterial embolization for unresectable HCC. Six of these trials compared TACE versus control. The review concluded that all of the trials suffered from bias, larger trials should be conducted and that, despite the fact that TACE has been advocated as standard locoregional treatment, there was no firm evidence to support or refute the use of TACE in patients with unresectable HCC. Also in 2011, Xie et al reported on a meta-analysis of 13 studies on treatment for unresectable HCC using chemoembolization (1233 patients) or microsphere embolization (597 patients, using a glass or resin hepatic artery infusion). Microsphere embolization treatment was found to result in statistically significant longer overall survival (OS) (hazard ratio [HR], 0.73; 95% confidence interval [CI]: 0.60 to 0.88; p<0.001) and time to progression (HR=0.61; 95% CI: 0.41 to 0.89; p=0.01) than chemoembolization. However, this meta-analysis included uncontrolled observational studies, which limits interpretation.

Two randomized studies comparing TACE with conservative treatment enrolled consecutive patients who met study criteria for unresectable HCC from among larger series of patients seeking treatment at the respective institutions. Patients in the Lo et al study tended to have more advanced disease based on Okuda stage, Eastern Cooperative Oncology Group (ECOG) Performance Status, and presence of tumor-related symptoms. The studies used a similar embolization regimen (lipiodol and gelatin sponge) but different cytotoxic agents (doxorubicin or cisplatin). Both studies reported significantly increased response and OS rates following treatment with TACE. In the Lo study, the chemoembolization group received a total of 192 courses of chemoembolization with a median of 4.5 (range, 1-15) courses per patient. Chemoembolization resulted in a marked tumor response, and the actuarial survival was significantly better in the TACE group (1 year, 57%; 2 years, 31%; 3 years, 26%) than in the control group (1 year, 32%; 2 years, 11%; 3 years, 3%; p=0.002). After adjustments for baseline variables that were prognostic on univariate analysis made with a multivariate Cox model, the survival benefit of chemoembolization remained significant (relative risk [RR] of death, 0.49; 95% CI: 0.29 to 0.81; p=0.006). In the Llovet et al study, patients received arterial embolization with gelatin sponge, TACE, or conservative therapy. The trial was stopped when it was shown that chemoembolization had survival benefits compared with conservative treatment (HR of death, 0.47; 95% CI: 0.25 to 0.91; p=0.025). Survival probabilities at 1 year and 2 years were 75% and 50% for embolization; 82% and 63% for chemoembolization, and 63% and 27% for the control group (chemoembolization vs. control, p=0.009), all respectively. Neither the Lo nor the Llovet study reported an increase in serious or life-threatening treatment-related adverse events (AEs) after TACE.

A randomized controlled trial compared TACE versus systemic chemotherapy for patients with unresectable HCC. Mabed et al randomized 100 patients to be treated with either TACE or intravenous doxorubicin. Fifty patients were treated with TACE using lipiodol, doxorubicin, and cisplatin, and 50 patients were treated with systemic doxorubicin alone. A significantly higher response rate was seen in patients treated with TACE, with a partial response (PR) achieved in 32% versus 10% of patients in the chemotherapy arm (p=0.007). A significantly more favorable tumor response to TACE was observed in patients with a single lesion (p=0.02), Child class A (p=0.007), Okuda stage 1 (p=0.005),
and α-fetoprotein less than 400 ng/mL (p<0.001). The probability of tumor progression was significantly lower with TACE, where the median progression-free survival (PFS) was 32 weeks (range, 16-70 weeks) versus 26 weeks (range, 14-54 weeks) for patients treated with systemic chemotherapy (p=0.03). The median OS did not differ significantly in cases treated with TACE (38 weeks) versus those treated with chemotherapy (32 weeks) (p=0.08), except for patients with serum albumin greater than 3.3 g/dL (60 vs. 36 weeks; p=0.003). Mortality in the chemoembolization arm was due to tumor progression in 53% of patients, liver failure in 32%, and gastrointestinal tract bleeding in 15%. Mortality in the chemotherapy arm was due to tumor progression in 64% of patients, liver failure in 25%, and gastrointestinal bleeding in 11%. Treatment-related mortality was 4% in the TACE arm versus 0% in the chemotherapy arm. The authors concluded that the OS benefits of TACE and systemic doxorubicin were similar for patients with unresectable HCC amenable to either treatment and that it is necessary to optimize the risk/benefit ratio of TACE and select the proper patient population that may benefit from this procedure.

Takayasu et al reported results from an 8-year prospective cohort study of TACE from Japan.7 In this study, 8510 patients with unresectable HCC underwent TACE using emulsion of lipiodol and anticancer agents followed by gelatin sponge particles as an initial treatment. Exclusion criteria were extrahepatic metastases and/or any previous treatment before the present TACE. The mean follow-up period was 1.77 years. For OS rates by TACE, median and 1-, 3-, and 5-year survivals were 34 months, 82%, 47%, and 26%, respectively. The multivariate analyses showed significant difference in degree of liver damage (p<0.001), α-fetoprotein value (p<0.001), maximum tumor size (p<0.001), number of lesions (p<0.001), and portal vein invasion (p<0.001). The TACE-related mortality rate after the initial therapy was 0.5%.

A large cohort study from Biselli et al reported on 56 cirrhotic patients with unresectable HCC undergoing at least 1 course of TACE who were matched 1:1 for sex, age (in 5-year periods), parameters of Child-Pugh score, Okuda stage, and tumor type with a control group that had received only supportive care.8 The 2 groups were comparable for cause of cirrhosis, α-fetoprotein serum levels and “Cancer of the Liver Italian Program” (CLIP) score. The 56 patients in the TACE group received a total of 123 treatment courses. Survival rates at 12, 24, and 30 months in patients receiving TACE were 74.3%, 52.1%, and 38.8%, respectively, with a median survival time of 25 months, whereas in supportive-care patients, the rates were 39.4%, 25.4%, and 19%, respectively, with a median survival time of 7 months (p<0.001). At univariate analysis, TACE, tumor type, presence of ascites, α-fetoprotein serum level, CLIP score, and Okuda stage were associated significantly with survival. Only TACE and CLIP score proved to be independent predictors of survival at multivariate analysis.

In a prospective study from a single center in Canada, Molinari et al reported on the effectiveness of TACE for HCC in a North American population.9 Child-Pugh A cirrhosis or better patients with unresectable HCC and without radiologic evidence of metastatic disease or segmental portal vein thrombosis were assessed between November 2001 and May 2004. Of 54 patients who satisfied the inclusion criteria, 47 underwent 80 TACE sessions. Chemoembolization was carried out using doxorubicin and lipiodol followed by an injection of embolic particles, when necessary. Repeat treatments were carried out at 2- to 3-month intervals for recurrent disease. The survival probabilities at 1, 2, and 3 years were 76.6%, 55.5%, and 50%, respectively. At 6 months after the first intervention, 31% of patients had a PR and 60% had stable disease. Major AEs occurred after 20% of sessions, including 2 treatment-related deaths (4% of patients). The authors concluded that these survival probabilities at 1 and 2 years after TACE were comparable with results in randomized studies from Europe and Asia.
TACE for Resectable HCC as Neoadjuvant or Adjuvant Therapy

Preoperative TACE

In 2013, Zhou et al reported on a meta-analysis of 21 studies evaluating preoperative TACE. Included in the studies were 4 RCTs and 17 nonrandomized studies with a total of 3210 patients. Preoperative TACE was given to 1431 patients with the remaining 1779 serving as controls. In 18 studies, 5-year DFS for preoperative TACE ranged from 7.0% to 57% and 8.0% to 48.8% in the controls. In 16 studies, the 5-year OS for preoperative TACE was 15.4% to 62.7% and 19.0% to 62.5% in the controls. In the pooled analyses, there were no significant improvements with preoperative TACE versus controls in 5-year DFS (32.1% vs. 30.0%, p=0.17) and OS (40.2% vs. 45.2%, p=0.37). Intra- and extrahepatic recurrence were also not significantly different in the pooled analyses (51.2% vs. 53.6% and 12.9% vs. 10.3%, p=0.19, respectively).

In 2009, Chua et al conducted a systematic review of neoadjuvant transarterial chemoembolization for resectable HCC. They evaluated 18 studies, including 3 randomized trials and 15 observational studies, some of which are outlined in detail in the following section. The review comprised 3927 patients, 1293 of whom underwent neoadjuvant TACE. The conclusions were that TACE could be used safely and resulted in high rates of pathologic responses but did not appear to improve DFS in the TACE group. No conclusions could be drawn with respect to OS differences between the TACE and non-TACE groups due to the heterogeneity of the results across studies.

From July 2001 to December 2003, Zhou et al randomized 108 patients with resectable HCC (≥5 cm suitable for a partial hepatectomy) to preoperative TACE treatment (n=52) or no preoperative treatment (control group) (n=56). Five patients (9.6%) in the preoperative TACE group did not receive surgical therapy because of extrahepatic metastasis or liver failure. The preoperative TACE group had a lower resection rate (n=47 [90.4%] vs. n=56 [100%]; p=0.017), and longer operative time (mean, 176.5 minutes vs. 149.3 minutes; p=0.042). No significant difference was found between the 2 groups in mortality. At a median follow-up of 57 months, 41 (78.8%) of 52 patients in the preoperative TACE group and 51 (91.1%) of 56 patients in the control group had recurrent disease (p=0.087). The 1-, 3-, and 5-year DFS rates were 48.9%, 25.5%, and 12.8%, respectively, for the preoperative TACE group and 39.2%, 21.4%, and 8.9%, respectively, for the control group (p=0.372). The 1-, 3-, and 5-year OS rates were 73.1%, 40.4%, and 30.7%, respectively, for the preoperative TACE group and 69.6%, 32.1%, and 21.1%, respectively, for the control group (p=0.679). Preoperative TACE did not improve surgical outcome and resulted in drop-out from definitive surgery because of progression of disease and liver failure.

Kabir et al reported on a trial of 124 patients randomized to receive preoperative tumor-targeted TACE (42 patients), whole-liver TACE (39 patients), or no TACE (43 patients) before surgical resection for HCC. No significant differences were found between the pooled preoperative TACE groups and the control group in DFS (p=0.660) or OS (p=0.412). Nor were there significant differences between the 3 groups in DFS (p=0.830) or OS (p=0.713). DFS at 1 and 3 years for the tumor-targeted TACE group was 67% and 29%, 63% and 27% for the whole-liver TACE group, and 53% and 32% for the control group. OS at 1 and 3 years for the tumor-targeted TACE group was 91% and 80%, 84% and 70% for the whole-liver TACE group, and 83% and 60% in the control group.

Zhang et al retrospectively analyzed the therapeutic results of 1457 HCC patients treated with hepatectomy, 120 of whom had received TACE before surgical resection. They showed that the 5-year DFS rates of the patients who received more than 2 sessions of TACE, those who received 1 session of TACE, and no TACE patients were 51.0%, 35.5%, and 29.2%, respectively.
and 21.4%, respectively, and that the mean DFS times of the 3 groups were 66.4, 22.5, and 12.5 months, respectively. They concluded that effective preoperative TACE may be one of the best methods that can be clinically performed at present for resectable HCC, including small HCC, for improving DFS after hepatectomy. On the other hand, Choi et al studied 273 patients who underwent curative resection for HCC, 120 of whom underwent preoperative TACE. The 1-, 3-, and 5-year DFS rates were 76.0%, 57.7%, and 51.3%, respectively, in the TACE group and 70.9%, 53.8%, and 46.8%, respectively, in the non-TACE group. Although a difference was noted between the TACE and non-TACE groups, it was not significant.15

Postoperative TACE

Li et al described the results of their randomized study exploring the efficacy of postoperative TACE and portal vein chemotherapy (PVC) for patients with HCC complicated by portal vein tumor thrombosis (PVTT) and to evaluate prognostic factors.16 The study cohort consisted of 112 patients with HCC and PVTT randomly divided into 3 groups: group A (37 patients), surgery only; group B (35 patients), operation plus TACE; group C (40 patients), operation plus TACE and PVC. Portal vein thrombus extirpation was performed at the time of surgery. AEs and complications were mostly related to the operation, catheters, and local chemotherapy and included liver decompensation (15.0%), catheter obstruction (11.6%), and nausea and loss of appetite (22.1%). The DFS curve was significantly different among the 3 groups, as estimated by the Kaplan-Meier method (both p<0.05). Group C showed a higher DFS rate than group A (p<0.05), but no statistical differences were found between group A and group B, or group B and group C (both p>0.05). The 1-, 3-, and 5-year DFS rates in group A (resection only, n=37) were 50.7, 17.8, and 0%, respectively; in group B (resection + TACE, n=35), rates were 62.3%, 23.7%, and 4.0%, respectively, and in group C (resection + TACE + PVC, n=40) increased to 74.4%, 46.1%, and 11.5%, respectively. Tumor size, tumor number, PVTT location, and treatment modalities were independent prognostic factors (p<0.05). The authors concluded that postoperative TACE combined with PVC may benefit the survival of patients with HCC complicated by PVTT in the short-term (<60 months), but long-term efficacy is not yet certain and needs to be confirmed by further studies.

TACE as a Bridge to Liver Transplant

TACE has been explored in various settings: as a technique to prevent tumor progression in patients on the liver transplant waiting list, to downstage tumors such that the patient is considered a better candidate for liver transplantation, and to decrease the incidence of posttransplant recurrence in patients with larger (T3) tumors. All of these indications are in part related to the United Network for Organ Sharing (UNOS) liver allocation policy, which prioritizes patients for receiving donor livers. The UNOS policy and the previous 3 indications are discussed further in the following sections.

UNOS Liver Allocation Policy17

In 2002, UNOS introduced a new liver allocation system, model for end-stage liver disease (referred to as MELD) for adult patients awaiting liver transplant. The MELD score is a continuous disease severity scale incorporating bilirubin, prothrombin time (i.e., international normalized ratio [INR]), and creatinine into an equation, producing a number that ranges from 6 (less ill) to 40 (gravely ill). Aside from those in fulminant liver failure, donor livers are prioritized to those with the highest MELD number. This scale accurately predicts the risk of dying from liver disease except for those with HCC, who often have low MELD scores, because bilirubin, INR, and creatinine levels are near normal. Therefore, patients with HCC are assigned additional allocation points according to the size and number (T stage) of tumor nodules as follows:
Medical Policy

T1: 1 nodule greater than 1 cm and 1.9 cm or smaller

T2: 1 nodule between 2.0 and 5.0 cm, or 2 or 3 nodules each 1 cm or greater and up to 3.0 cm

T3: 1 nodule larger than 5.0 cm, or 2 or 3 nodules with at least 1 larger than 3.0 cm

In considering how to allocate the scarce donor organs, UNOS sought to balance risk of death on the waiting list against risk of recurrence after transplant. Patients with T1 lesions are considered at low risk of death on the waiting list, while those with T3 lesions are at high risk of posttransplant recurrence and are generally not considered transplant candidates. Patients with T2 tumors have an increased risk of dying while on the waiting list compared with those with T1 lesions, and an acceptable risk of posttransplant tumor recurrence. Therefore, UNOS criteria, which were updated in 2013, prioritize only T2 HCC that meet specified staging and imaging criteria by allocating additional points equivalent to a MELD score predicting a 15% probability of death within 3 months. This definition of T2 lesions is often referred to as the “Milan criteria,” in reference to a key 1996 study that examined the recurrence rate of HCC according to the size of the initial tumor. Note that liver transplantation for those with T3 HCC is not prohibited, but these patients do not receive any priority on the waiting list. All patients with HCC awaiting transplantation are reassessed at 3-month intervals. Those whose tumors have progressed and are no longer T2 tumors will lose the additional allocation points.

Additionally, nodules identified through imaging of cirrhotic livers are given an OPTN (Organ Procurement and Transplantation Network) class 5 designation. Class 5B and 5T nodules are eligible for automatic priority. Class 5B criteria consist of a single nodule 2 cm or larger and up to 5 cm (T2 stage) that meets specified imaging criteria. Class 5T nodules have undergone subsequent locoregional treatment after being automatically approved on initial application or extension. A single class 5A nodule (>1 cm and <2 cm) corresponds to T1 HCC and does not qualify for automatic priority. However, combinations of Class 5A nodules are eligible for automatic priority if they meet stage T2 criteria. Class 5X lesions are outside of stage T2 and are not eligible for automatic exception points. Nodules less than 1 cm are considered indeterminate and are not considered for additional priority.

Therefore, the UNOS allocation system provides strong incentives to use loco-regional therapies to downsize tumors to T2 status and to prevent progression while on the waiting list. A 2010 report of a national conference on liver allocation in patients with HCC in the United States addressed the need to better characterize the long-term outcomes of liver transplantation for patients with HCC and to assess whether it is justified to continue the policy of assigning increased priority for candidates with early-stage HCC on the transplant waiting list in the United States. At the completion of the meeting, there was a general consensus for the development of a calculated continuous HCC priority score for ranking HCC candidates on the list that would incorporate the calculated MELD score, α-fetoprotein, tumor size, and rate of tumor growth and that only candidates with at least stage T2 tumors would receive additional HCC priority points. The report addressed the role of locoregional therapy to downstage patients from T3 to T2 and stated that the results of downstaging before liver transplantation are heterogeneous, with no upper limits for tumor size and number before downstaging across studies, and the use of different end points for downstaging before transplantation.

TACE as a Technique to Prevent Tumor Progression While on the Waiting List

Several studies have reported dropout rates of waiting-listed patients treated with locoregional therapy. However, lacking controlled data, it is difficult to assess contributions of locoregional therapy to time on the waiting list. In addition, in 2002, as
discussed here, UNOS revised its liver allocation policy, such that wait times for patients with HCC meeting the Milan criteria have now declined.

Given these limitations, the following case series have been reported. Grazia dei et al reported on 48 patients with HCC awaiting transplantation; all underwent TACE every 6 to 8 weeks until a complete response or a donor organ became available. None was removed from the list due to tumor progression, and mean waiting time was 178 (±105) days. Maddala et al studied the dropout rates of 54 patients receiving TACE while awaiting transplantation. During a median waiting time of 211 days (range, 28-1099 days), the dropout rate was 15%. More recently, Fisher et al reported on 33 patients who received multimodality ablation therapy, consisting primarily of radiofrequency ablation (RFA) or TACE. Five patients (12%) were removed from the waiting list after waits of 5 to 14 months. In this protocol, patients with tumors larger than 5 cm were not considered transplant candidates until the tumor was completely ablated using TACE, RFA, or another technique. Yamashiki et al reported on 288 patients given various ablative therapies; the dropout rate due to tumor progression at 1 and 3 years was 6.25 and 23%, respectively. Tumors larger than 3 cm affected the dropout rate due to tumor progression.

Obed et al reported on 20 patients with nonprogression of lesions after TACE who had liver transplantation; median survival in this group was 92.3 months.

TACE to Downstage HCC Prior to Transplant/Reduce Recurrence Rates in Those With T3 Lesions

Published literature reflects an ongoing discussion as to whether the UNOS allocation criteria should expand to include patients with larger tumors. Some patients with T3 lesions apparently are cured with liver transplant, although most experience recurrent tumor. For example, in the seminal 1996 study, the 4-year recurrence-free survival (RFS) was 92% in those who met the Milan criteria (T2 lesion) compared with 59% in those who did not; additional studies confirm this difference in RFS rate. However, other institutions have reported similar outcomes with expanded criteria. For example, Yao et al at University of California at San Francisco (UCSF) reported similar RFS after transplant in patients with T2 and a subset of those with T3 tumors. This T3 subset was defined as a single lesion 6.5 cm or smaller or no more than 3 lesions with none greater than 3 cm and with a sum of tumor diameters 8 cm or smaller. These expanded criteria are known as “the UCSF criteria.”

Lewandowski et al compared radioembolization with chemoembolization in the efficacy of downstaging 86 patients with HCC from stage T3 to T2. Patients were treated with either 90-yttrium microspheres (n=43) or TACE (n=43). Median tumor size was similar between the 2 treatment groups (5.7 and 5.6 cm, for TACE vs. radioembolization, respectively.) PR rates were 61% versus 37% for radioembolization versus TACE, respectively, with downstaging from T3 to T2 in 58% of patients treated with radioembolization versus 31% with TACE (p<0.05).

The results and efficacy of downstaging with TACE to achieve a reduction in tumor burden to a T2 lesion remain controversial. There are retrospective data showing the ability to downstage patients with TACE, however, there is no randomized evidence that tumor downstaging before liver transplant confers a survival advantage.

TACE for Cholangiocarcinoma

Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver malignancy after HCC (10% vs. 90%, respectively). Surgical resection represents the only form of curative therapy; however, most ICC patients are not surgical candidates due to
their advanced disease at the time of diagnosis, which is caused by the lack of symptoms until late in the disease. The overall prognosis of ICC is far worse than for extrahepatic cholangiocarcinoma because of its late presentation. Most patients with ICC qualify for palliative therapy, including systemic chemotherapy and radiotherapy. However, such palliative options afford little to no survival improvement over supportive therapy alone, as ICC responds poorly to such existing therapies. The prognosis for patients with unresectable ICC is approximately 5- to 8-month survival.

In 2014 Boehm et al reported on a meta-analysis of 20 studies (N=657) on the hepatic artery therapies of TACE, hepatic artery infusion and Yttrium(90) for ICC. The median OS was lowest for TACE and drug-eluting bead TACE (12.4 and 12.3 months, respectively) when compared with hepatic artery infusion (22.8 months) and Yttrium (90) (13.9 months). Complete and partial response to therapy was also lowest with TACE (17.3%) compared with Yttrium (90) (27.4%) and hepatic artery infusion (56.9%). However, TACE had less grade III/IV toxicity than hepatic artery infusion (0.26 vs. 0.35 events per patient, respectively).

Park et al conducted a retrospective review of the medical and imaging records of 155 patients with unresectable ICC who were treated between 1996 and 2009 with TACE. Patients who had undergone previous local or systemic therapy were excluded. A total of 72 patients underwent TACE, and 83 received supportive care, based on physician and patient preference. Supportive care included pain and ascites control and biliary drainage. Survival was the primary end point. Baseline patient and tumor characteristics were well-balanced between the 2 groups. Most patients had stage 3 or 4 disease. Tumor multiplicity was single and multiple or diffuse in 43% and 57% of the TACE patients, respectively, and 53% and 47% in the supportive group, respectively. Maximum tumor size in the TACE group was 8.1±3.4 cm and 7.8±3.1 cm in the supportive group. The median number of sessions per patient in the TACE group was 2.5 (range, 1-17 sessions). After TACE, the incidence of significant (≥ grade 3) hematologic and nonhematologic toxicities was 13% and 24%, respectively, and no patients died within 30 days following TACE. The Kaplan-Meier survival analysis showed a median survival in the TACE group of 12.2 months, versus a median of 3.3 months in the supportive therapy group (p<0.001). Survival rates also differed significantly between the 2 groups according to the presence or absence of extrahepatic metastases. In patients with liver-only disease, the median survival period was 13.3 months (95% CI: 9.2 to 17.4 months) for the TACE group and 4 months (95% CI: 3 to 5 months; p<0.001) for the supportive treatment group. In patients with extrahepatic metastases, the median survival period was 11.3 months (95% CI: 8.9 to 13.7 months) for the TACE group and 3.2 months for the supportive treatment group (95% CI: 2.6 to 3.8 months; p<0.001).

Knüppel et al reported a retrospective review of 195 patients with intrahepatic (57%) or extrahepatic (43%) cholangiocarcinoma. Patients received either chemotherapy or a combination of photodynamic therapy or TACE with chemotherapy. Some of the patients underwent surgical resection. Patients who only received palliative care (no surgery) survived 9.8 months longer with combination chemotherapy and TACE (n=14) versus chemotherapy alone (n=81) (median survival for chemotherapy plus TACE 22.0 months vs. for chemotherapy alone 12.2 months; p=0.039). Survival was not reported for extrahepatic versus intrahepatic cholangiocarcinoma.

Shen et al retrospectively compared 53 patients who received TACE after surgical resection of intrahepatic cholangiocarcinoma with 73 patients who had surgical resection without TACE. DFS rates at 1, 3, and 5 years (24.5%, 17.0%, and 17.0%, respectively) in the patients receiving TACE were not significantly different from the group that did not receive postsurgical TACE (33.3%, 19.4%, and 15.3%, respectively).
Medical Policy

OS rates were significantly better in the TACE group at 1, 3, and 5 years (69.8%, 37.7%, and 28.3%, respectively) than the non-TACE group (54.2%, 25.0%, and 20.8%, respectively (p=0.045)). However, the retrospective nature of this study limits interpretation of its findings.

Herber et al conducted a retrospective study in 15 patients with inoperable ICC treated with TACE between 2000 and 2006. None of the patients had extrahepatic tumor spread. The decision for TACE was made by an interdisciplinary tumor board in each individual case. Fifty-eight TACE sessions were performed in the 15 patients (3.9±3.8; range, 1-15). Eight patients had unifocal tumor and 7 had multifocal disease. The mean tumor size was 10.8±4.6 cm (range, 2.0-18.0 cm). No deaths and no acute liver failure occurred under TACE therapy. Major complications were observed in 2 patients, having anaphylactic shock owing to contrast medium administration in 1 and gastric ulceration due to lipiodol displacement in the second patient. Mean survival was 21.1 months (95% CI: 9.4 to 32.5 months).

Burger et al prospectively collected data on 17 patients with unresectable cholangiocarcinoma treated with TACE at their institution between 1995 and 2004. Among the 17 patients, 11 presented without any previous treatment, whereas 6 had received previous therapy including chemotherapy with or without radiation with evidence of progression. Fifteen patients had intrahepatic tumors and 2 had perihilar tumors. The procedure was well-tolerated by 82% of the patients, who experienced mild or no adverse effects that resolved with conservative therapy alone. Two patients had minor complications (12%), which were managed successfully, and 1 had a major complication that resulted in a fatal outcome with a rapidly declining course from the time of diagnosis to death shortly after TACE. Median survival for the 17 patients was 23 months (95% CI: 15.4 to 30.6 months). Two patients with previously unresectable disease underwent successful resection after TACE.

TACE for Hepatic Metastases From Neuroendocrine Tumors

Neuroendocrine tumors are a heterogeneous group that are typically slow-growing tumors with an indolent course, with the capacity to synthesize and secrete hormones. Liver metastases may result in significant hormonal symptoms and are associated with a poor prognosis. Systemic chemotherapy for these tumors has shown modest response rates of limited duration, and although somatostatin analogs are usually effective in controlling symptoms, the disease eventually becomes refractory. Therefore, liver-directed therapies aim to reduce tumor burden to reduce hormone levels and palliate symptoms in patients with unresectable neuroendocrine metastases to the liver.

A 2010 review by Nazario and Gupta summarizes the experience to date with TACE (and transarterial embolization [TAE]), which is composed of many nonrandomized, retrospective reports that have demonstrated reduced tumor burden, reduced hormone levels, and palliation of symptoms with these interventions. The article summarizes the experience with TACE and TAE and metastatic neuroendocrine tumors as showing radiologic response ranging from 25% to 95% and symptomatic response in 53% to 100% of patients. Five-year OS rates have varied from 14% to 75%, likely a reflection of the heterogeneity of the patient populations and regimens of treatment used. Some of the studies in the review are detailed next.

Ruutuainen et al reported on a study of 67 patients that compared bland embolization with TACE in neuroendocrine tumors metastatic to the liver. In this study, 67 patients underwent 219 embolization procedures: 23 patients received primarily bland embolization with polyvinyl alcohol with or without iodized oil and 44 primarily received chemoembolization with cisplatin, doxorubicin, mitomycin-C, iodized oil, and polyvinyl
alcohol. Patients with disease relapse were treated again when feasible. Ten of 67 patients (15%) were lost to follow-up. Toxicities of grade 3 or worse in severity occurred after 25% of chemoembolization procedures and 22% of bland embolization procedures. Rates of freedom from progression at 1, 2, and 3 years were 49%, 49%, and 35%, respectively, after chemoembolization and 0%, 0%, and 0%, respectively, after bland embolization, respectively (log-rank test, p=0.16). Patients treated with chemoembolization and bland embolization experienced symptomatic relief for means of 15 and 7.5 months, respectively (p=0.14). Survival rates at 1, 3, and 5 years after therapy were 86%, 67% and 50%, respectively, after chemoembolization and 68%, 46%, and 33%, respectively, after bland embolization (p=0.18). The authors concluded that chemoembolization demonstrated trends toward improvement in time to progression, symptom control, and survival and indicated that a multicenter prospective randomized trial is warranted. These results are similar to those reported previously by Gupta et al, who noted that in a retrospective series of 81 patients, hepatic artery embolization or chemoembolization resulted in symptomatic and radiographic response in most patients with carcinoid metastases to the liver.36

Osborne et al reported on a nonrandomized study of 59 patients with neuroendocrine tumors who received either cytoreduction or embolization for symptomatic hepatic metastases.37 The duration of symptom relief (35 vs. 22 months) and survival (43 vs. 24 months) both favored the cytoreduction approach. The authors commented that cytoreduction should be pursued when possible even if complete resection may not be achievable.

TACE for Hepatic Metastases From Uveal (Ocular) Melanoma

Uveal (ocular) melanoma is the most common primary ocular malignancy in adults and shows a strong predilection for liver metastases. Even with successful treatment of the primary tumor, up to 50% of patients will subsequently develop systemic metastases, with liver involvement in up to 90% of these patients. Metastatic uveal melanoma is resistant to systemic chemotherapy, leading to the evaluation of locoregional treatment modalities to control tumor progression in the liver, including TACE.

A 2010 review by Sato addresses the locoregional management of hepatic metastases from primary uveal melanoma and summarizes the published studies to date, many of which are detailed in the following section.38

Huppert et al reported the results of a pilot trial of 14 patients with hepatic metastases from uveal melanoma who underwent TACE.39 Patients received a mean of 2.4 treatments (34 total treatments among the 14 patients). Responses were partial for 8 patients (57%). Four patients (29%) had stable disease and 2 (14%) had tumor progression. Median time to progression was 8.5 months (range, 5-35 months), and median survival after the first TACE treatment was 14.5 months in responders and 10 months in nonresponders (p=NS). In this study, the survival rate was 86% at 6 months, 50% at 12 months, 28% at 18 months, and 14% at 24 months after the first TACE treatment. Survival advantage was most pronounced for patients with tumor occupying less than 25% of the liver volume (n=7) with a median of 17 months versus 11 months in the 7 patients with more than 25% involvement of the liver (p=0.02). The authors state that, for comparison, with no treatment, survival after detection of liver metastases is 2 to 7 months with a median 1-year survival rate less than 30%. Response rates for systemic chemotherapy are less than 10% and 20% to 50% with immunochemotherapy, but with only a median survival of 5 to 9 months and serious toxicity.

Sharma et al reported on the use of TACE in the treatment of melanoma metastatic to the liver reported in a series of 20 patients (17 with ocular melanoma) treated between
The 20 patients underwent 46 TACE sessions (mean, 2.4 sessions; range, 1-5). The mean and median OS times were 334 and 271 days, respectively. There were no deaths within 30 days of treatment. The authors noted that this treatment resulted in longer survival than has been noted among historical controls. This work builds on results reported by Bedikien et al in 1995 that showed that TACE had a 36% response rate (cisplatin chemoembolization) compared with a 1% response rate to systemic chemotherapy.41

Patel et al reported on BCNU treatment for uveal melanoma and demonstrated that those who responded had improved survival.42 In this study, 18 of the 24 patients experienced regression or stabilization of hepatic metastases for at least 6 weeks. The overall response rates (complete responses [CRs] and PRs) for the intention-to-treat population and for patients who were evaluable for response were 16.7% and 20.4%, respectively. The median OS of the entire intention-to-treat group of patients was 5.2 months, for patients with CR or PR in hepatic metastases it was 21.9 months, for patients with stable disease, 8.7 months, and for patients with progressive disease, 3.3 months. Thus, for patients with metastatic uveal melanoma who have disease confined to the liver, the metastatic liver disease may respond to TACE treatment and patients who respond to TACE have improved survival.

TACE for Hepatic Metastases From Colorectal Cancer

For patients with liver metastases from Colorectal Cancer (CRC) who do not qualify for surgical resection, traditionally, systemic chemotherapy is first-line treatment. However, in more than 60% of cases, the treatment fails and disease progresses. For the large proportion of patients in whom second- and third-line medical treatment has failed, other palliative therapies to control disease progression and symptoms have been studied, including TACE.43

The literature has reported a median survival in patients with liver-dominant colorectal metastases treated with chemoembolization from 7 to 25 months.44–46 However, studies are difficult to compare, as some patients who were treated were still eligible for systemic chemotherapy, and survival was sometimes calculated and reported as a mean time from the date of diagnosis of liver metastases rather than from the first treatment with TACE.

Vogl et al evaluated tumor control and survival in 463 patients with unresectable liver metastases of colorectal origin that did not respond to systemic chemotherapy and were treated with TACE.47 Of the 463 patients, 67% had 5 or more metastases, 8% had 1 metastasis, 10% had 2, and 14% had 3 or 4. Patients were treated at 4-week intervals, with a total of 2441 chemoembolization procedures performed (mean, 5.3 sessions per patient), using one of 3 local chemotherapy protocols. Local tumor control was PR in 68 patients (14.7%), stable disease in 223 patients (48.2%), and progressive disease in 172 patients (37.1%). Median survival from the start of TACE treatments was 14 months (compared with the results from a previous study by the same author, in which untreated patients had a survival rate of 7 to 8 months).48 One-year survival rate after TACE was 62% and 28%, respectively, at 2 years. No difference in survival was observed between the 3 different local chemotherapy protocols.

Hong et al compared salvage therapy for liver-dominant colorectal metastatic adenocarcinoma using TACE or 90-yttrium radioembolization.43 Mean dominant lesion sizes were 9.3 cm and 8.2 cm in the chemoembolization and radioembolization groups, respectively. Multilobar disease was present in 67% and 87% of the respective groups, and extrahepatic metastases were present in 43% and 33%, respectively. Of 36 patients, 21 underwent TACE, with a median survival of 7.7 months (survival measured from the
date of the first TACE treatment to the date of death or to April 2007, if still living). Survival results were comparable with other studies addressing CRC and TACE, which ranged from 7 to 10 months. Median survival was 6.9 months for the radioembolization group (p=0.27). The 1-, 2-, and 5-year survival rates for the 2 groups were 43%, 10%, and 0%, respectively, for the chemoembolization group and 34%, 18%, and 0%, respectively, for the radioembolization group.

Richardson et al reported on a systematic review of 1 RCT and 5 observational studies on TACE with irinotecan-eluting beads for unresectable colorectal liver metastasis. Survival times ranged from a median of 15.2 months to 25 months. The most common AE was postembolization syndrome (abdominal pain, nausea, vomiting) followed by hypertension. In the RCT included in the Richardson systematic review, Fiorentini et al reported on 74 patients randomly allocated to TACE with irinotecan-eluting beads (n=36) or systemic irinotecan, fluorouracil and leucovorin (n=38). With irinotecan-eluting beads, OS was significantly longer with a median OS of 22 months (95% CI: 21 to 23 months) versus 15 months (95% CI: 12 to 18) for the systemic chemotherapy group (p=0.031). PFS was significantly longer at 7 months (95% CI: 3 to 11) in the irinotecan-eluting beads group compared with 4 months (95% CI: 3 to 5) months in the systemic chemotherapy group (p=0.006). However, larger studies are needed to confirm these findings.

TACE for Hepatic Metastases From Breast Cancer

Vogl et al reported the efficacy of repeated treatments with TACE in 208 patients with unresectable hepatic metastases from breast cancer. A total of 1068 chemoembolizations were performed (mean, 5.1 sessions per patient; range, 3-25). Mean patient age was 56.4 years (range, 29-81). Patients received either 1 of 2 chemotherapeutic agents alone (mitomycin-C or gemcitabine) or in combination. Tumor response was evaluated by magnetic resonance imaging according to RECIST criteria. For all chemotherapy protocols, local tumor control was PF 13% (27/208), stable disease 50.5% (105/208), and progressive disease 36.5% (76/208). The 1-, 2-, and 3-year survival rates after TACE were 69%, 40%, and 33%. Median and mean survival times from the beginning of the TACE sessions were 18.5 and 30.7 months. Treatment with mitomycin-C only showed median and mean survival times of 13.3 and 24 months, and with gemcitabine only 11 and 22.3 months. With a combination of mitomycin-C and gemcitabine, median and mean survival times were 24.8 and 35.5 months (all results are respectively).

Ongoing and Unpublished Clinical Trials

An online search of ClinicalTrials.gov on September 18, 2014, identified several studies on TACE.

A phase 3 trial is recruiting patients with unresectable HCC to be randomized to TACE with versus without sorafenib. (NC01004978) Primary outcome measure is PFS, with secondary outcome measures including OS, anatomic patterns of failure, toxicity and tumor response. Estimated enrollment is 400, with estimated trial completion date September 2018. Sorafenib with or without TACE is also being evaluated in a phase 3 trial of 398 patients with an estimated completion date of June 2016 (NC01906216). In another phase 3 trial, TACE with doxorubicin-eluting beads with or without sorafenib will be evaluated in 412 patients with an estimated completion date of November 2014 (NC01324076).

A phase 3 trial is recruiting patients with HCC with 1 lesion 5 cm or larger or multinodular disease with 4 or more lesions (at least one 3 cm) to receive TACE with or without brivanib as adjuvant treatment. (NC00908752) Estimated enrollment is 870 and estimated study completion date is September 2014.
A phase 3 trial is recruiting patients to evaluate TACE before liver transplant for HCC (NCT01676194). Patients meeting UCSF criteria will be randomized to receive TACE every week until liver transplantation or CR or no treatment until liver transplant. This trial is expected to enroll 140 patients with an estimated study completion date of August 2017.

A phase 3 trial is recruiting patients to evaluate TACE with recombinant adenovirus for unresectable HCC (NCT01869088). This study is expected to enroll 120 patients and has an estimated completion date of December 2015.

TACE plus RFA for recurrent HCC (NCT01833286) will be evaluated in a phase 3 trial estimated to enroll 200 patients. This trial has not begun recruiting patients yet and has an estimated study completion date of July 2019.

Adjuvant TACE after hepatectomy for HCC will be evaluated in a phase 3 trial enrolling 144 patients (NCT01512407). This trial is estimated for completion in January 2017.

Summary of Evidence

Transcatheter arterial chemoembolization (TACE) of the liver is a proposed alternative to conventional systemic or intra-arterial chemotherapy, and to various nonsurgical ablative techniques, to treat resectable and nonresectable tumors. TACE combines the infusion of chemotherapeutic drugs with particle embolization. Tumor ischemia secondary to the embolization raises the drug concentration compared with infusion alone, extending the retention of the chemotherapeutic agent and decreasing systemic toxicity.

Unresectable hepatocellular carcinoma (HCC): Studies (including randomized trials) of TACE for patients with unresectable HCC confined to the liver who meet specific selection criteria (i.e., good hepatic function/reserve and no portal vein thrombosis) have shown improved survival compared with only supportive care. A systematic review highlighted some of the possible biases associated with these studies.

Resectable HCC: There are little data on the use of TACE in the neoadjuvant or adjuvant setting, and a significant long-term survival benefit has not been demonstrated. A meta-analysis found no significant improvements in survival or recurrence with the use of preoperative TACE for resectable HCC.

TACE in the liver transplant setting for HCC: TACE has become an accepted method to prevent tumor growth while patients are on the liver transplant waiting list.

Cholangiocarcinoma: Most of the data for the use of TACE to treat unresectable cholangiocarcinoma is for unresectable intrahepatic cholangiocarcinoma. Although the data suggest a survival advantage with TACE versus supportive care or systemic chemotherapy alone, the data consist mostly of retrospective reviews without matched patient controls, and clinical vetting did not uniformly support the use of TACE for this indication.

Metastatic neuroendocrine tumors: Studies have included heterogeneous patient populations, and interpretation of survival data using TACE is difficult. Several studies have shown reduced tumor burden, reduced hormone levels, and palliation of symptoms with TACE.

Metastatic uveal melanoma: Several studies have shown a survival advantage using locoregional treatment modalities, including TACE, in patients who have liver-dominant metastases from ocular melanoma.
Metastatic colorectal cancer and other metastases: Studies have consisted of small numbers of patients, and the results have been variable across studies due to variation in patient selection criteria and regimens used between different studies. At this time, the data do not support the use of TACE in these settings.

Supplemental Information

Practice Guidelines and Position Statements

National Comprehensive Cancer Network Guidelines

Hepatocellular carcinoma (v.2.2014): chemoembolization is listed as an option for patients with unresectable HCC with tumors not amenable to ablation therapy only and in the absence of large-volume extrahepatic disease (category 2A_, with the additional recommendation that tumor lesions larger than 5 cm should be treated using arterial embolic approaches, whereas those tumors 3 to 5 cm can be considered for combination therapy with ablation and arterial embolization. Additionally, TACE is relatively contraindicated in patients with portal vein thrombosis and bilirubin levels greater than 3 mg/dL and absolutely contraindicated with Child-Pugh class C liver function.

Intrahepatic cholangiocarcinoma (v.2.2014): does not address the use of TACE in intrahepatic cholangiocarcinoma.

Neuroendocrine tumors, carcinoïd, and islet cell tumors (v.2.2014): chemoembolization is recommended for patients with unresectable liver metastases (category 2B_.

Colon cancer (v1.2015): the use of arterially-directed embolic therapy for metastatic colon cancer to the liver has a category 3 recommendation (based on any level of evidence, there is major National Comprehensive Cancer Network [NCCN] disagreement about whether the intervention is appropriate).

No NCCN guidelines were identified for ocular malignancies.

Breast cancer (v3.2014): TACE is not addressed as a treatment option for breast cancer metastatic to the liver.

U.S. Preventive Services Task Force Recommendations

TACE is not a preventive service.

Medicare National Coverage

There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

References

1. Blue Cross Blue Shield Association Technology Evaluation Center (TEC). Transcatheter arterial chemoembolization of hepatic tumors. TEC Assessments. 2000;Volume 15, Tab 22. PMID

44. Lang EK, Brown CL. Colorectal metastases to the liver: selective chemoembolization. Radiology. 1993;189(2):417-422. PMID
Documentation Required for Clinical Review

Please provide the following documentation:

- History and physical, and/or consultation reports and progress notes including:
 - Clinical indications/justification of procedure
 - Child Pugh score (if applicable)
 - Clinical indications/justification of procedure
 - Eastern Cooperative Oncology Group functional status (if applicable)
 - Previous treatment(s), duration, and response(s)
 - Treatment plan
 - Tumor type and description (i.e., resectable or unresectable, primary or metastatic, tumor burden [e.g., liver dominant])
- Pertinent radiological imaging results (i.e., abdominal CT and/or MRI and/or PET)
- Pathology report including tumor node metastasis (TNM) classification
- Current serum chemistry, liver function tests, and tumor marker results

Post Service
- Procedure report(s)

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to benefit design; therefore, contract language should be reviewed before applying the terms of the Policy. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement.

MN/IE

The following service/procedure may be considered medically necessary in certain instances and investigational in others. Services may be medically necessary when policy criteria are met. Services are considered investigational when the policy criteria are not met or when the code describes application of a product in the position statement that is investigational.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT®</td>
<td>37243</td>
<td>Vascular embolization or occlusion, inclusive of all radiological supervision and interpretation, intraprocedural roadmapping, and imaging guidance necessary to complete the intervention; for tumors, organ ischemia, or infarction</td>
</tr>
<tr>
<td></td>
<td>75894</td>
<td>Transcatheter therapy, embolization, any method, radiological supervision and interpretation (this code cannot be reported with code 37243)</td>
</tr>
<tr>
<td>HCPCS</td>
<td>Q0083</td>
<td>Chemotherapy administration by other than infusion</td>
</tr>
</tbody>
</table>
Medical Policy

<table>
<thead>
<tr>
<th>ICD-9 Procedure</th>
<th>Technique Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.25</td>
<td>Injection or infusion of cancer chemotherapeutic substance</td>
</tr>
</tbody>
</table>

ICD-10 Procedure

<table>
<thead>
<tr>
<th>ICD-10 Procedure</th>
<th>For dates of service on or after 10/01/2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>3E05005</td>
<td>Introduction of Other Antineoplastic into Peripheral Artery, Open Approach</td>
</tr>
<tr>
<td>3E05305</td>
<td>Introduction of Other Antineoplastic into Peripheral Artery, Percutaneous Approach</td>
</tr>
<tr>
<td>3E06005</td>
<td>Introduction of Other Antineoplastic into Central Artery, Open Approach</td>
</tr>
<tr>
<td>3E06305</td>
<td>Introduction of Other Antineoplastic into Central Artery, Percutaneous Approach</td>
</tr>
</tbody>
</table>

ICD-9 Diagnosis

<table>
<thead>
<tr>
<th>ICD-9 Diagnosis</th>
<th>All Diagnoses</th>
</tr>
</thead>
</table>

ICD-10 Diagnosis

<table>
<thead>
<tr>
<th>ICD-10 Diagnosis</th>
<th>For dates of service on or after 10/01/2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Diagnoses</td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/27/2015</td>
<td>BCBSA medical policy adoption</td>
<td>Medical Policy Committee</td>
</tr>
</tbody>
</table>

Definitions of Decision Determinations

Medically Necessary: A treatment, procedure or drug is medically necessary only when it has been established as safe and effective for the particular symptoms or diagnosis, is not investigational or experimental, is not being provided primarily for the convenience of the patient or the provider, and is provided at the most appropriate level to treat the condition.

Investigational/Experimental: A treatment, procedure or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California / Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a Split Evaluation, where a treatment, procedure or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.
Prior Authorization Requirements

This service (or procedure) is considered medically necessary in certain instances and investigational in others (refer to policy for details).

For instances when the indication is medically necessary, clinical evidence is required to determine medical necessity.

For instances when the indication is investigational, you may submit additional information to the Prior Authorization Department.

Within five days before the actual date of service, the Provider MUST confirm with Blue Shield that the member’s health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member's eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should also be directed to the Prior Authorization Department. Please call 1-800-541-6652 or visit the Provider Portal www.blueshieldca.com/provider.

The materials provided to you are guidelines used by this plan to authorize, modify, or deny care for persons with similar illness or conditions. Specific care and treatment may vary depending on individual need and the benefits covered under your contract. These Policies are subject to change as new information becomes available.