Policy Statement

Transplants, such as a multivisceral transplant and a small bowel and liver transplant, may be considered medically necessary for pediatric and adult patients when all of the following criteria are met:

- Have been managed with long-term total parenteral nutrition
- Have developed evidence of impending end-stage liver failure
- Intestinal failure (characterized by loss of absorption and the inability to maintain protein-energy, fluid, electrolyte, or micronutrient balance)

Retransplants, such as a multivisceral retransplant and a small bowel and liver retransplant, may be considered medically necessary after a failed primary small bowel and liver transplant or multivisceral transplant.

A small bowel and liver transplant or multivisceral transplant is considered investigational in all other situations.

The transplantation of Hepatitis C Virus (HCV)-viremic solid organs (kidney, lung, heart, liver, small bowel, pancreas) to a HCV non-viremic recipient with a plan to use direct-acting antiviral treatment for HCV is considered investigational.

Policy Guidelines

The American Society of Transplantation Consensus Conference on the use of hepatitis C viremic donors in solid organ transplantation concluded that the transplantation of organs from HCV viremic donors into HCV-negative recipients should be conducted only under monitored IRB-approved protocols and studies. (See Supplemental Information).

General Criteria
Potential contraindications for solid organ transplant are subject to the judgment of the transplant center include the following:

- Known current malignancy, including metastatic cancer
- Recent malignancy with high risk of recurrence
- History of cancer with a moderate risk of recurrence
- Systemic disease that could be exacerbated by immunosuppression
- Untreated systemic infection making immunosuppression unsafe, including chronic infection
- Other irreversible end-stage disease not attributed to intestinal failure
- Psychosocial conditions or chemical dependency affecting ability to adhere to therapy

Intestinal failure results from surgical resection, congenital defect, or disease-associated loss of absorption and is characterized by the inability to maintain protein-energy, fluid, electrolyte, or micronutrient balance. Short bowel syndrome is an example of intestinal failure.

Candidates should meet the following criteria:

- Adequate cardiopulmonary status
- Documentation of patient compliance with medical management

Small Bowel/Liver-Specific Criteria
Evidence of intolerance of total parenteral nutrition (TPN) includes, but is not limited to, multiple and prolonged hospitalizations to treat TPN-related complications or the development of
progressive but reversible liver failure. In the setting of progressive liver failure, small bowel transplant may be considered a technique to avoid end-stage liver failure related to chronic TPN and would thus avoid the necessity of a multivisceral transplant.

Description

This evidence review addresses transplantation and retransplantation of an intestinal allograft in combination with a liver allograft, either alone or in combination with one or more of the following organs: stomach, duodenum, jejunum, ileum, pancreas, or colon.

Related Policies

- Isolated Small Bowel Transplant

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

Regulatory Status

Small bowel/liver and multivisceral transplantation are surgical procedures and, as such, are not subject to regulation by the U.S. Food and Drug Administration.

The U.S. Food and Drug Administration regulates human cells and tissues intended for implantation, transplantation, or infusion through the Center for Biologics Evaluation and Research, under Code of Federal Regulation Title 21, parts 1270 and 1271. Pancreas transplants are included in these regulations.

Rationale

Background

Short Bowel Syndrome

Short bowel syndrome is defined as an inadequate absorbing surface of the small intestine due to extensive disease or surgical removal of a large portion of the small intestine. In some instances, short bowel syndrome is associated with liver failure, often due to the long-term complications of total parenteral nutrition.

Treatment

A small bowel/liver transplant or a multivisceral transplant includes the small bowel and liver with one or more of the following organs: stomach, duodenum, jejunum, ileum, pancreas, and/or colon. The type of transplantation depends on the underlying etiology of intestinal failure, quality of native organs, presence or severity of liver disease, and history of prior abdominal surgeries. A multivisceral transplant is indicated when anatomic or other medical problems preclude a small bowel/liver transplant. Complications following small bowel/liver and multivisceral transplants
include acute or chronic rejection, donor-specific antibodies, infection, lymphoproliferative disorder, graft-versus-host disease, and renal dysfunction.2.

Literature Review
Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life, and ability to function—including benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of technology, two domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. Randomized controlled trials are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Transplantation of Small Bowel and Liver or Multivisceral Organs

Clinical Context and Test Purpose
The purpose of small bowel and liver transplant alone or multivisceral transplant in patients who have intestinal failure and evidence of impending end-stage liver failure is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Does small bowel and liver transplant alone or multivisceral transplant improve the net health outcome in individuals with intestinal failure and evidence of impending end-stage liver failure?

The following PICOs were used to select literature to inform this review.

Patients
The relevant population of interest are individuals with intestinal failure and evidence of impending end-stage liver failure.

Interventions
The therapy being considered is small bowel and liver transplant alone or multivisceral transplant.

Comparators
The following practices are currently being used to make decisions about intestinal failure and evidence of impending end-stage liver failure: medical management and parenteral nutrition.

Outcomes
The general outcomes of interest are overall survival (OS), morbid events, and treatment-related mortality and morbidity, including short- and long-term graft survival and 1- and 5-year OS.

Systematic Reviews
A Blue Cross Blue Shield Association Technology Evaluation Center (TEC) Assessment (1999) focused on multivisceral transplantation and offered the following conclusions:
“Multivisceral transplantation in patients with small bowel syndrome, liver failure, and/or other gastrointestinal problems such as pancreatic failure, thromboses of the celiac axis and the superior mesenteric artery, or pseudo-obstruction affecting the entire gastrointestinal tract is associated with poor patient and graft survival. Pediatric and adult patients have a similar 2- and 5-year survival of 33% to 50%. However, without this procedure, it is expected that these patients would face 100% mortality.”

Case Series

The published literature consists of case series, mainly reported by single-centers in the U.S. and Europe. Tables 1 and 2 summarize the characteristics and results of the case series, respectively. Many case series have included isolated small bowel transplantations (see Blue Shield of California Medical Policy: Isolated Small Bowel Transplant).

Reasons for transplantations were mainly short bowel syndrome. Other reasons included congenital enteropathies and motility disorders. Most common outcomes reported were survival rates and weaning off total parenteral nutrition. Several studies have presented survival rates by type of transplantation, while others have combined all types of transplants when reporting survival rates. When rates were reported by type of transplant, isolated transplantations had higher survival rates than multivisceral transplants (see Table 2).

Several investigators have reported higher survival rates in transplants conducted more recently than those conducted earlier. Reasons for improved survival rates in more recent years have been attributed to the development of more effective immunosuppressive drugs and the learning curve for the complex procedure.

Authors of these series, as well as related reviews, have observed that while outcomes have improved over time, recurrent and chronic rejection and complications of immunosuppression continue to be obstacles to long-term survival. A separate discussion of complications follows the evidence tables.

Table 1. Summary of Key Case Series Characteristics for Transplantations

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>N</th>
<th>Median Age (Range), y</th>
<th>Interventions</th>
<th>Follow-Up (Range)</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lacaille et al</td>
<td>France</td>
<td>110</td>
<td>5.3 (0.4-19)</td>
<td>• Isolated IT</td>
<td>60</td>
<td>Of 55 alive:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Combined liver IT</td>
<td></td>
<td>• 17 at <5 y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Multivisceral graft</td>
<td>5</td>
<td>• 17 at 5-10 y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 21 at ≥10 y</td>
</tr>
<tr>
<td>Garcia Aroz et al</td>
<td>U.S.</td>
<td>10</td>
<td>1.5 (0.7-13)</td>
<td>• Isolated IT</td>
<td>7</td>
<td>6/7 alive at ≥10 y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Combined liver IT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dore et al</td>
<td>U.S.</td>
<td>30</td>
<td>0.2 (0.1-18)</td>
<td>• Isolated IT</td>
<td>6</td>
<td>28 (4-175) mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Combined liver IT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Multivisceral graft</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Rutter et al</td>
<td>U.K.</td>
<td>60</td>
<td>1.8 (0-8)</td>
<td>• Isolated IT</td>
<td>16</td>
<td>21.3 (0-95) mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Combined liver IT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Modified multivisceral</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lauro et al</td>
<td>Italy</td>
<td>46</td>
<td>34 (NR)</td>
<td>• Isolated IT</td>
<td>34</td>
<td>51.3 mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Combined liver IT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Modified multivisceral</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varkey et al</td>
<td>Sweden</td>
<td>20</td>
<td>Adults: 44 (20-67)</td>
<td>• Isolated IT</td>
<td>4</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Children: 6 (0.5-13)</td>
<td>• Combined liver IT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Multivisceral graft</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangus et al</td>
<td>U.S.</td>
<td>100</td>
<td>Adults: 48 (NR to 66)</td>
<td>• Multivisceral graft</td>
<td>84</td>
<td>25 mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Children: 1 (0.6 to NR)</td>
<td>• Modified multivisceral</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IT: intestinal transplantation; NR: not reported.

a Living donors.
Table 2. Summary of Key Case Series Results for Transplantations

<table>
<thead>
<tr>
<th>Study</th>
<th>Interventions</th>
<th>n</th>
<th>Survival</th>
<th>Off TPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lacaille et al (2017)⁷</td>
<td>• Isolated IT</td>
<td>60</td>
<td>59% at 10 y; 54% at 18 y</td>
<td>All treatments combined: 73% at last follow-up</td>
</tr>
<tr>
<td></td>
<td>• Combined liver IT</td>
<td></td>
<td>48% at 10 y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multivisceral graft</td>
<td></td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All treatments combined:</td>
<td></td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>Garcia Aroz et al (2017)⁸,⁹</td>
<td>• Isolated IT</td>
<td>7</td>
<td>All transplantations combined: 100% at last follow-up</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Combined liver IT</td>
<td>3</td>
<td>83% at 9 y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multivisceral graft</td>
<td></td>
<td>33% at 10 y</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67% at 2.5 y</td>
<td></td>
</tr>
<tr>
<td>Dore et al (2016)⁹</td>
<td>• Isolated IT</td>
<td>6</td>
<td>83% at 9 y</td>
<td>All treatments combined: 71% in 31 d</td>
</tr>
<tr>
<td></td>
<td>• Combined liver IT</td>
<td>6</td>
<td>71% at 1 y</td>
<td>62% at last follow-up</td>
</tr>
<tr>
<td></td>
<td>• Multivisceral graft</td>
<td>18</td>
<td>33% at 10 y</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65% at 5 y</td>
<td></td>
</tr>
<tr>
<td>Rutter et al (2016)¹⁰</td>
<td>• Isolated IT</td>
<td>16</td>
<td>92% at 1 y; 37% at 5 y</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>• Multivisceral graft</td>
<td>35</td>
<td>71% at 1 y; 33% at 5 y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Modified multivisceral</td>
<td>9</td>
<td>85% at 1 y; 65% at 5 y</td>
<td></td>
</tr>
<tr>
<td>Lauro et al (2014)¹¹</td>
<td>• Isolated IT</td>
<td>34</td>
<td>All transplantations combined: 77% at 1 y</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>• Combined liver IT</td>
<td>6</td>
<td>58% at 3 y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multivisceral graft</td>
<td>6</td>
<td>53% at 5 y</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37% at 10 y</td>
<td></td>
</tr>
<tr>
<td>Varkey et al (2013)¹²</td>
<td>• Isolated IT</td>
<td>4</td>
<td>All transplantations combined: 78% at 1 y</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>• Combined liver IT</td>
<td>1</td>
<td>50% at 5 y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multivisceral graft</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangus et al (2013)¹³</td>
<td>• Multivisceral graft</td>
<td>84</td>
<td>All transplantations combined: 72% at 1 y</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>• Modified multivisceral</td>
<td>16</td>
<td>57% at 5 y</td>
<td></td>
</tr>
</tbody>
</table>

IT: intestinal transplantation; NR: not reported; TPN: total parenteral nutrition.

° Living donors.

Complications

Several case series have focused on complications after small bowel and multivisceral transplantation. For example, Nagai et al (2016) reported on cytomegalovirus (CMV) infection after intestinal or multivisceral transplantation at a single-center in the U. S.¹³ A total of 210 patients had either an intestinal transplant, multivisceral transplant, or modified multivisceral transplant between 2003 and 2014. The median length of follow-up was 2.1 years. Thirty-four (16%) patients developed CMV infection at a median of 347 days after transplantation. Nineteen patients had tissue-invasive CMV disease. CMV infection was significantly associated with rejection (odds ratio, 2.6; p<0.01) and adversely affected patient survival (hazard ratio, 2.7; p<0.001). In a 2016 report from another U.S. center, Timpone et al (2016) reported that 16 (19%) of 85 patients undergoing intestinal or multivisceral transplantation developed CMV infection at a mean of 139 days (range, 14-243 days) postoperatively.¹⁴

Wu et al (2016) investigated the incidence and risk factors of acute antibody-mediated rejection (ABMR) among patients undergoing intestinal transplantation (n=175).¹⁵ All patients were 25 years of age. Acute ABMR was diagnosed by clinical evidence; histologic evidence of tissue damage; focal or diffuse linear C4d deposition; and circulating anti-human leukocyte antigen antibodies. Of the 175 intestinal transplants, 58% were liver-free grafts, 36% included a liver graft, and 6.3% were retransplantations. Eighteen cases of acute ABMR were identified—14 (14%) among the patients undergoing first liver-free transplantation, 2 (3%) among patients undergoing liver and small bowel transplantations, and 2 (18%) among the patients undergoing retransplantation. Graft failure occurred in 67% of patients with acute ABMR. The presence of a
donor-specific antibody and a liver-free graft were associated with the development of acute ABMR.

In a series by Cromvik et al (2016), 5 (19%) of 26 patients were diagnosed with graft-versus-host disease after intestinal or multivisceral transplantation. Risk factors for graft-versus-host disease were: malignancy as a cause of transplantation; neoadjuvant chemotherapy; or brachytherapy before transplantation.

In a retrospective study, Florescu et al (2012) reported on bloodstream infections among 98 children (>18 years) with small bowel and combined organ transplants. Seventy-seven (79%) underwent small bowel transplant in combination with a liver, kidney, or kidney and pancreas, and 21 had an isolated small bowel transplant. After a median follow-up of 52 months, 58 (59%) patients had survived. The 1-year survival rate was similar in patients with combined small bowel transplant (75%) and those with isolated small bowel transplant (81%). In the first year after transplantation, 68 (69.4%) patients experienced at least 1 episode of bloodstream infection. The 1-year survival rate for patients with bloodstream infections was 72% compared with 87% in patients without bloodstream infections (p=0.056 for the difference in survival in patients with and without bloodstream infections).

Wu et al (2011) reported on 241 patients who underwent intestinal transplantation. Of these, 147 (61%) had multivisceral transplants, 65 (27%) had small bowel transplants, and 29 (12%) had small bowel/liver transplants. Recipients included 151 (63%) children and 90 (37%) adults. Twenty-two (9%) patients developed graft-versus-host disease. Children younger than 5 years old were most likely to develop this condition (13.2% [16/121]) than children between 5 and 18 years (6.7% [2/30]) and adults older than 18 years (4.4% [9/90]).

Human Immunodeficiency Virus-Positive Transplant Recipients

Solid-organ transplant for patients who are HIV-positive was historically controversial, due to the long-term prognosis for HIV positivity and the impact of immunosuppression on HIV disease. No studies reporting on outcomes in HIV-positive patients who received small bowel and liver or multivisceral transplants were identified in literature reviews.

Current Organ Procurement Transplantation Network policy permits HIV-positive transplant candidates.

The British HIV Association and the British Transplantation Society (2017) updated their guidelines on kidney transplantation in patients with HIV disease. These criteria may be extrapolated to other organs:

- Adherent with treatment, particularly antiretroviral therapy
- CD4 count greater than 100 cells/mL (ideally >200 cells/mL) for at least 3 months
- Undetectable HIV viremia (<50 HIV-1 RNA copies/mL) for at least 6 months
- No opportunistic infections for at least six months
- No history of progressive multifocal leukoencephalopathy, chronic intestinal cryptosporidiosis, or lymphoma.

Section Summary: Transplantation of Small Bowel/Liver or Multivisceral Organs

Intestinal transplantation procedures are infrequently performed and only relatively small case series, generally, single-center, are available. For patients experiencing significant complications from total parenteral nutrition, which can lead to liver failure and repeated infections, these case series have shown reasonably high posttransplant survival rates in patients who have a high probability of death without treatment. Guidelines and U.S. federal policy no longer view HIV infection as an absolute contraindication for solid organ transplantation.
Retransplantation of Small Bowel and Liver or Multivisceral Organs

Clinical Context and Test Purpose

The purpose of small bowel and liver retransplant alone or multivisceral retransplant in patients who have a failed small bowel and liver or multivisceral transplant without contraindications for retransplant is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Does small bowel and liver retransplant alone or multivisceral retransplant improve the net health outcome in individuals with a failed small bowel and liver or multivisceral transplant and no contraindications to retransplant?

The following PICOs were used to select literature to inform this review.

Patients

The relevant population of interest are individuals with a failed small bowel and liver or multivisceral transplant without contraindications for retransplant.

Interventions

The therapy being considered is small bowel and liver retransplant alone or multivisceral retransplant.

Comparators

The following practices are currently being used to make decisions about failed small bowel and liver or multivisceral transplant when there are no contraindications for retransplant: medical management and parenteral nutrition.

Outcomes

The general outcomes of interest are OS, morbid events, treatment-related mortality, and treatment-related morbidity, including short- and long-term graft survival and 1- and 5-year OS.

Case Series

Evidence for the use of retransplantation to treat individuals who have failed intestinal transplantations includes several case series, mostly from single institutions. The case series by Desai et al (2012) analyzed records from the United Network for Organ Sharing database. Among the case series described in Table 3, reasons for retransplantations included: acute rejection, chronic rejection, CMV, liver failure, lymphoproliferative disorder, and graft dysfunction. Survival rates for retransplantations are listed in Table 4.

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>N</th>
<th>Median Age (Range), y</th>
<th>Interventions</th>
<th>Follow-Up, (Range), mo</th>
</tr>
</thead>
</table>
| Ekser et al (2018) | U.S. | 18b | 27.0 (17.4)a (0.9 to 57) | • Isolated IT
• Modified MVT
• Multivisceral graft | 1
1
NR |
| Lacaille et al (2017) | France | 10 | 13 (5-16) | • Isolated IT
• Combined liver IT | 3
7
4 |
77 (children) | NR | Adults:
• Isolated IT
• Combined liver IT
Children:
• Isolated IT
• Combined liver IT | 41
31
41
28
49
31
7
9
NR |
Combined liver IT
Multivisceral graft | 31
7
9
NR |
Study | Country | N | Median Age (Range), y | Interventions | Follow-Up, (Range), mo
---|---|---|---|---|---
Mazariegos et al (2008)\(^{22}\) | U.S. | 14 | 9.4 (3.2-22.7) | • Isolated IT
• Combined liver IT
• Multivisceral graft | 1 3 10

IT: intestinal transplantation; MVT: multivisceral transplantation; NR: not reported.
\(^{a}\) Mean (standard deviation).
\(^{b}\) Of a cohort of 218 transplants or retransplant procedures.

Table 4. Summary of Key Case Series Results for Retransplantations

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>n</th>
<th>Survival</th>
<th>Off TPN</th>
</tr>
</thead>
</table>
| Ekser et al (2018)\(^{21}\) | • Isolated IT
• Modified MVT
• Multivisceral graft | 1 1 16 | Graft survival:
• 71% at 1 y; 56% at 3 y; 44% at 5 y
Patient survival:
• 71% at 1 y; 47% at 3 y; 37% at 5 y | NR |
| Lacaille et al (2017)\(^{7}\) | • Isolated IT
• Combined liver IT | 3 7 | All transplantations combined:
• 30% at last follow-up | NR |
| Desai et al (2012)\(^{6}\) | Adults:
• Isolated IT
• Combined liver IT
Children:
• Isolated IT
• Combined liver IT | 41 31 28 49 | Adults:
• 80% at 1 y; 47% at 3 y; 29% at 5 y
Children:
• 63% at 1 y; 56% at 3 y; 47% at 5 y | NR |
| Abu-Elmagd et al (2009)\(^{5}\) | • Isolated IT
• Combined liver IT
• Multivisceral graft | 31 7 9 | All transplantations combined:
• 69% at 1 y
• 47% at 5 y | NR |
| Mazariegos et al (2008)\(^{22}\) | • Isolated IT
• Combined liver IT
• Multivisceral graft | 1 3 10 | All transplantations combined:
• 71% at last follow-up | 100% |

IT: intestinal transplantation; MVT: multivisceral transplant; NR: not reported; TPN: total parenteral nutrition.

Section Summary: Retransplantation of Small Bowel and Liver or Multivisceral Organs

Evidence for retransplantations derives mostly from single-center case series, though one series used records from the United Network for Organ Sharing database. Although limited in quantity, the available follow-up data after retransplantation have suggested reasonably high survival rates after small bowel and liver transplants and multivisceral retransplantation in patients who continue to meet criteria for transplantation.

Summary of Evidence

For individuals who have intestinal failure and evidence of impending end-stage liver failure who receive a small bowel and liver transplant alone or multivisceral transplant, the evidence includes a limited number of case series. The relevant outcomes are OS, morbid events, and treatment-related mortality and morbidity. These transplant procedures are infrequently performed and few reported case series exist. However, results from the available case series have revealed fairly high postprocedural survival rates. Given these results and the exceedingly poor survival rates of patients who exhaust all other treatments, transplantation may prove not only to be the last option but also a beneficial one. Transplantation is contraindicated for patients in whom the procedure is expected to be futile due to comorbid disease, or in whom posttransplantation care is expected to significantly worsen comorbid conditions. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have a failed small bowel and liver or multivisceral transplant without contraindications for retransplant who receive a small bowel and liver retransplant alone or multivisceral retransplant, the evidence includes case series. The relevant outcomes are OS, morbid events, and treatment-related mortality and morbidity. Although limited in quantity, the
available post retransplantation data have suggested reasonably high survival rates. Given exceedingly poor survival rates without retransplantation of patients who have exhausted other treatments, evidence of postoperative survival from uncontrolled studies is sufficient to demonstrate that retransplantation provides a survival benefit in appropriately selected patients. Retransplantation is contraindicated for patients in whom the procedure is expected to be futile due to comorbid disease or in whom posttransplantation care is expected to significantly worsen comorbid conditions. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Supplemental Information

Practice Guidelines and Position Statements

The American Society of Transplantation (2017) convened a consensus conference of experts to address issues related to the transplantation of hepatitis C virus (HCV) viremic solid organs into HCV non-viremic recipients.26 Key findings and recommendations are summarized in Table 5.

Table 5. American Society of Transplantation Consensus Conference - Use of HCV Viremic Donors

<table>
<thead>
<tr>
<th>Content Area</th>
<th>Key Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition of HCV positive</td>
<td>HCV -viremic reflecting a positive NAT should be adopted</td>
</tr>
<tr>
<td>Data interpretation</td>
<td>HCV antibody status alone limits interpretation of outcomes of transplantation of HCV “positive” organs</td>
</tr>
<tr>
<td>Transmission and Treatment</td>
<td>Highest risk for unexpected HCV transmission is associated with organ donation from a person who injected drugs within the eclipse or pre-viremic period</td>
</tr>
<tr>
<td>OPTN policy</td>
<td>No current policies prevent transplantation of HCV-viremic organs into HCV non-viremic recipients</td>
</tr>
<tr>
<td>Ethical considerations</td>
<td>Transplantation of HCV-viremic organs into HCV non-viremic recipients should be conducted under site specific IRB approved protocols with multi-step informed consent.</td>
</tr>
</tbody>
</table>

American Gastroenterological Association

The American Gastroenterological Association (2003) published a position statement on short bowel syndrome and intestinal transplantation.23 The statement noted that only patients with life-threatening complications due to intestinal failure or long-term total parenteral nutrition have undergone intestinal transplantation. The statement recommended the following Medicare-approved indications, pending availability of additional data:

- Impending liver failure
- Thrombosis of major central venous channels
- Frequent central line-associated sepsis
- Frequent severe dehydration.

American Society of Transplantation

The American Society of Transplantation (2001) issued a position paper on indications for pediatric intestinal transplantation.24 The Society listed the following disorders in children as being potentially treatable by intestinal transplantation: short bowel syndrome, defective intestinal motility, and impaired enterocyte absorptive capacity. Contraindications for intestinal transplant to treat pediatric patients with intestinal failure are similar to those of other solid organ transplants: profound neurologic disabilities, life-threatening comorbidities, severe immunologic deficiencies, nonresectable malignancies, autoimmune diseases, and insufficient vascular patency.

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

Medicare covers intestinal transplantation for the purposes of restoring intestinal function in patients with irreversible intestinal failure only when performed for patients who have failed total
parenteral nutrition and only when performed in centers that meet approved criteria. The criteria for approval of centers are based on a "volume of 10 intestinal transplants per year with a 1-year acturtimes survival rate of 65 percent."

Ongoing and Unpublished Clinical Trials
A search of ClinicalTrials.gov in June 2019 did not identify any ongoing or unpublished trials that would likely influence this review.

References

Reproduction without authorization from Blue Shield of California is prohibited

Documentation for Clinical Review

Please provide the following documentation (if when requested):

- Referring physician history and physical
- Gastroenterologist and/or Hepatology consultation report and/or progress notes documenting:
 - Diagnosis (including disease staging) and prognosis
 - Synopsis of alternative treatments performed and results
 - Specific transplant type being requested
- Surgical consultation report and/or progress notes
- Results of completed transplant evaluation including:
 - Clinical history
 - Specific issues identified during the transplant evaluation
 - Consultation reports/letters (when applicable)
 - Correspondence from referring physicians (when applicable)
 - Identification of donor for living liver transplant (when information is available)
- Medical social service/social worker and/or psychiatric (if issues are noted) evaluations including psychosocial assessment or impression of patient’s ability to be an adequate candidate for transplant
- Radiology reports including:
 - Abdominal CT, ultrasound, and/or MRI
 - CXR
- GI procedure reports:
 - Colonoscopy if > 50 years of age
 - EGD
- Cardiology procedures and respiratory function reports:
 - EKG
 - Cardiac echocardiogram, stress test, and cardiac catheterization (if indicated)
 - Pulmonary function tests (PFTs)
- Laboratory reports

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy. Inclusion or exclusion of codes does not constitute or imply member coverage or provider reimbursement.

MN/IE

The following services may be considered medically necessary in certain instances and investigational in others. Services may be considered medically necessary when policy criteria are met. Services may be considered investigational when the policy criteria are not met or when the code describes application of a product in the position statement that is investigational.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT®</td>
<td>44120</td>
<td>Enterectomy, resection of small intestine; single resection and anastomosis</td>
</tr>
<tr>
<td></td>
<td>44121</td>
<td>Enterectomy, resection of small intestine; each additional resection and anastomosis (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>44132</td>
<td>Donor enterectomy (including cold preservation), open; from cadaver donor</td>
</tr>
<tr>
<td></td>
<td>44133</td>
<td>Donor enterectomy (including cold preservation), open; partial, from living donor</td>
</tr>
<tr>
<td></td>
<td>44715</td>
<td>Backbench standard preparation of cadaver or living donor intestine allograft prior to transplantation, including mobilization and fashioning of the superior mesenteric artery and vein</td>
</tr>
<tr>
<td></td>
<td>44720</td>
<td>Backbench reconstruction of cadaver or living donor intestine allograft prior to transplantation; venous anastomosis, each</td>
</tr>
<tr>
<td></td>
<td>44721</td>
<td>Backbench reconstruction of cadaver or living donor intestine allograft prior to transplantation; arterial anastomosis, each</td>
</tr>
<tr>
<td></td>
<td>44799</td>
<td>Unlisted procedure, small intestine</td>
</tr>
<tr>
<td></td>
<td>47133</td>
<td>Donor hepatectomy (including cold preservation), from cadaver donor</td>
</tr>
<tr>
<td></td>
<td>47135</td>
<td>Liver allotransplantation, orthotopic, partial or whole, from cadaver or living donor, any age</td>
</tr>
<tr>
<td></td>
<td>47140</td>
<td>Donor hepatectomy (including cold preservation), from living donor; left lateral segment only (segments II and III)</td>
</tr>
<tr>
<td></td>
<td>47141</td>
<td>Donor hepatectomy (including cold preservation), from living donor; total left lobectomy (segments II, III and IV)</td>
</tr>
<tr>
<td>Type</td>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>47142</td>
<td>Donor hepatectomy (including cold preservation), from living donor; total right lobectomy (segments V, VI, VII and VIII)</td>
</tr>
<tr>
<td></td>
<td>47143</td>
<td>Backbench standard preparation of cadaver donor whole liver graft prior to allotransplantation, including cholecystectomy, if necessary, and dissection and removal of surrounding soft tissues to prepare the vena cava, portal vein, hepatic artery, and common bile duct for implantation; without trisegment or lobe split</td>
</tr>
<tr>
<td></td>
<td>47144</td>
<td>Backbench standard preparation of cadaver donor whole liver graft prior to allotransplantation, including cholecystectomy, if necessary, and dissection and removal of surrounding soft tissues to prepare the vena cava, portal vein, hepatic artery, and common bile duct for implantation; with trisegment split of whole liver graft into 2 partial liver grafts (i.e., left lateral segment [segments II and III] and right trisegment [segments I and IV through VIII])</td>
</tr>
<tr>
<td></td>
<td>47145</td>
<td>Backbench standard preparation of cadaver donor whole liver graft prior to allotransplantation, including cholecystectomy, if necessary, and dissection and removal of surrounding soft tissues to prepare the vena cava, portal vein, hepatic artery, and common bile duct for implantation; with lobe split of whole liver graft into 2 partial liver grafts (i.e., left lobe [segments II, III, and IV] and right lobe [segments I and V through VIII])</td>
</tr>
<tr>
<td></td>
<td>47146</td>
<td>Backbench reconstruction of cadaver or living donor liver graft prior to allotransplantation; venous anastomosis, each</td>
</tr>
<tr>
<td></td>
<td>47147</td>
<td>Backbench reconstruction of cadaver or living donor liver graft prior to allotransplantation; arterial anastomosis, each</td>
</tr>
<tr>
<td></td>
<td>47399</td>
<td>Unlisted procedure, liver</td>
</tr>
<tr>
<td>HCPCS</td>
<td>S2053</td>
<td>Transplantation of small intestine and liver allografts</td>
</tr>
<tr>
<td></td>
<td>S2054</td>
<td>Transplantation of multivisceral organs</td>
</tr>
<tr>
<td></td>
<td>S2055</td>
<td>Harvesting of donor multivisceral organs, with preparation and maintenance of allografts from cadaver donor</td>
</tr>
<tr>
<td>ICD-10 Procedure</td>
<td>0DY60Z0</td>
<td>Transplantation of Stomach, Allogeneic, Open Approach</td>
</tr>
<tr>
<td></td>
<td>0DY80Z0</td>
<td>Transplantation of Small Intestine, Allogeneic, Open Approach</td>
</tr>
<tr>
<td></td>
<td>0DYE0Z0</td>
<td>Transplantation of Large Intestine, Allogeneic, Open Approach</td>
</tr>
<tr>
<td></td>
<td>0FY00Z0</td>
<td>Transplantation of Liver, Allogeneic, Open Approach</td>
</tr>
<tr>
<td></td>
<td>0FYG0Z0</td>
<td>Transplantation of Pancreas, Allogeneic, Open Approach</td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/26/2014</td>
<td>Policy title change from Small Bowel Transplantation to Small Bowel/Liver and Multivisceral Transplant Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>01/01/2016</td>
<td>Coding update</td>
<td>Administrative Review</td>
</tr>
<tr>
<td>02/01/2017</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>10/01/2017</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>10/01/2018</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>10/01/2019</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
</tbody>
</table>
Definitions of Decision Determinations

Medically Necessary: A treatment, procedure, or drug is medically necessary only when it has been established as safe and effective for the particular symptoms or diagnosis, is not investigational or experimental, is not being provided primarily for the convenience of the patient or the provider, and is provided at the most appropriate level to treat the condition.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state government is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member's health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member's eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should also be directed to the Transplant Case Management Department. Please call 1-800-637-2066 ext. 3507708 or visit the Provider Portal www.blueshieldca.com/provider.

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.