Radioimmunoscintigraphy (Monoclonal Antibody Imaging) With Indium 111 Capromab Pendetide for Prostate Cancer

Policy Statement

Radioimmunoscintigraphy using indium 111 capromab pendetide (ProstaScint®) is considered investigational for the evaluation and management of individuals with prostate cancer.

Policy Guidelines

• N/A

Description

Radioimmunoscintigraphy (RIS) involves the administration of radiolabeled monoclonal antibodies, which are directed against specific molecular targets, followed by imaging with an external gamma camera. Indium 111 capromab pendetide (ProstaScint) is a monoclonal antibody directed against a binding site on the prostate-specific membrane antigen.

Related Policies

• N/A

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

Regulatory Status

In 1996, indium 111 capromab pendetide (ProstaScint®) (also referred to as CYT-356), which targets an intracellular binding site on prostate-specific membrane antigen, was approved by the U.S. Food and Drug Administration through the biologics license application process for use as a “diagnosing imaging agent in newly-diagnosed patients with biopsy-proven prostate cancer, thought to be clinically-localized after standard diagnostic evaluation, who are at high-risk for pelvic lymph node metastases. It is also indicated in post-prostatectomy patients with a rising PSA [prostate-specific antigen] and a negative or equivocal standard metastatic evaluation in whom there is a high clinical suspicion of occult metastatic disease.” Some other monoclonal antibodies, directed at extracellular prostate-specific membrane antigen-binding sites, are also under development.
Rationale

Background
Radioimmunoscintigraphy is an imaging modality that uses radio labeled monoclonal antibodies to target specific tissue types. Monoclonal antibodies that react with specific cellular antigens are conjugated with a radiolabeled isotope. The labeled antibody-isotope conjugate is then injected into the patient and allowed to localize to the target over a 2- to 7-day period. The patient then undergoes imaging with a nuclear medicine gamma camera, and radioisotope counts are analyzed. Imaging can be performed with planar techniques or by using single-photon emission computed tomography.

Literature Review
This review was informed by a Blue Cross Blue Shield Association Technology Evaluation Center (TEC) Assessment (1998). Evidence reviews assess whether a medical test is clinically useful. A useful test provides information to make a clinical management decision that improves the net health outcome. That is, the balance of benefits and harms is better when the test is used to manage the condition than when another test or no test is used to manage the condition.

The first step in assessing a medical test is to formulate the clinical context and purpose of the test. The test must be technically reliable, clinically valid, and clinically useful for that purpose. Evidence reviews assess the evidence on whether a test is clinically valid and clinically useful. Technical reliability is outside the scope of these reviews, and credible information on technical reliability is available from other sources.

Staging Before Curative Treatment
Clinical Context and Test Purpose
The purpose of radioimmunoscintigraphy (RIS) in men with prostate cancer who are undergoing staging before curative treatment is to detect distant metastases not evident on other imaging studies because detection of occult metastases in pelvic lymph nodes is likely to alter treatment recommendations.

The question addressed in this evidence review is: Does the use of RIS improve the net health outcome in men with prostate cancer undergoing pretreatment workup for cancer staging?

The following PICO was used to select literature to inform this review.

Population
The relevant population of interest are men with prostate cancer undergoing pretreatment cancer staging for curative treatment.

Interventions
The test being considered is RIS.

RIS is injected in a clinical facility certified to use radiopharmaceuticals, with imaging taking place in an outpatient setting 2 to 7 days later.

Comparators
The following tests are currently being used to make decisions about pretreatment workup of men with prostate cancer undergoing staging: bone scan, ultrasonography, computed tomography (CT), and magnetic resonance imaging.
Outcomes
The general outcomes of interest are overall survival (OS), test accuracy, and tumor recurrence. Follow-up for post-RIS injection imaging is up to 1 week.

Study Selection Criteria
For the evaluation of the clinical validity of the RIS, studies that met the following eligibility criteria were considered:
- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
- Included a suitable reference standard (describe the reference standard)
- Patient/sample clinical characteristics were described
- Patient/sample selection criteria were described.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires a review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Systematic Reviews
Based on the TEC Assessment (1998) of RIS, sensitivity in detecting tumors in the pelvic lymph nodes ranged from 50% to 75% and specificity ranged from 72% to 92.6%. Pooled data from the studies reviewed in the TEC Assessment produced an estimated 61% positive predictive value. If positive RIS results were used to exclude a patient from receiving potentially curative therapy (i.e., radical prostatectomy), then 38% of patients might be harmed by inappropriately withholding the potentially curative treatment. A pooled negative predictive value of 73% has suggested that if RIS played a key role in determining that pelvic lymph nodes were clear of the tumor before radical prostatectomy, then 26.7% of patients with a negative RIS scan and truly positive lymph nodes might receive ineffective surgery. Also, there is debate over a potential survival benefit with prostatectomy in the setting of positive lymph nodes. Nevertheless, regarding evaluating the pelvic nodes, the positive predictive values, and negative predictive values were not sufficiently high to avoid pelvic lymph node dissection when necessary to determine patient management.

Nonrandomized Studies
Since that TEC Assessment, reports have addressed the role of RIS in evaluating pelvic lymph node staging. Some of them appear in multiple publications, and population studies may overlap with results from multicenter studies. Moreover, the diagnostic accuracy of RIS for evaluating pelvic lymph nodes did not improve substantially over time. Additional reports have used predictive modeling or cross-sectional correlation analysis to explore the value of RIS results in predicting the extent of disease compared with other factors (e.g., prostate-specific antigen [PSA] level, Gleason score, clinical stage of disease). Some of these are mentioned but are not the focus of this review.

Reiter et al (2011) published a retrospective review of 197 patients who had both RIS and histopathology available at a single-institution over a 4-month period. For detection of positive lymph nodes, the sensitivity of RIS was 60.0% (95% confidence interval, 14.7% to 94.7%) and the specificity was 97.4% (95% confidence interval, 92.3% to 100%). The area under the receiver operating characteristic curve was 0.787. Increasing Gleason score and clinical setting of pretreatment evaluation were predictive of a positive RIS scan.
Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

No direct evidence was identified addressing the clinical utility of RIS for this indication.

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

Analyses discussed in the section on clinical validity would suggest that RIS provides additional and independent information that correlates with the extent of disease; however, the conclusions from these studies do not directly translate into how RIS results would be used to guide management that improves net health outcome. Without an understanding of diagnostic accuracy and how results would influence management, it is not possible to model potential effects on health outcomes. Thus, none of the reports identified to support the clinical effectiveness of using RIS to evaluate pelvic lymph nodes.

Section Summary: Staging Before Curative Treatment
For pretreatment staging before curative treatment, RIS has a modest sensitivity (estimated at 50% to 75%) and a moderate to high specificity (estimated at 72% to 93%). No studies have demonstrated that the use of RIS for pretreatment staging changes patient management or improves health outcomes.

Biochemical Failure After Prostatectomy or Radiotherapy
Clinical Context and Test Purpose
The purpose of RIS in men with prostate cancer and biochemical failure (i.e., a rising PSA) after curative treatment is to differentiate between local and distant recurrence because local recurrence may be treated with salvage radiotherapy, while distant recurrence is usually treated with androgen deprivation therapy.

The question addressed in this evidence review is: Does the use of RIS improve the net health outcome in men with prostate cancer who experience biochemical failure after curative treatment?

The following PICO was used to select literature to inform this review.

Population
The relevant population of interest are men with prostate cancer and biochemical failure after curative treatment.

Interventions
The test being considered is RIS.
RIS is injected in a clinical facility certified to use radiopharmaceuticals, with imaging taking place in an outpatient setting 2 to 7 days later.
Comparators
The following tests are currently being used to make decisions about monitoring men with prostate cancer and biochemical failure after curative treatment: bone scan, ultrasonography, CT, and magnetic resonance imaging.

Outcomes
The general outcomes of interest are OS, test accuracy, biochemical-free recurrence, and tumor recurrence. Follow-up for post-RIS injection imaging is up to 1 week.

Study Selection Criteria
For the evaluation of the clinical validity of the RIS, studies that met the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
- Included a suitable reference standard (describe the reference standard)
- Patient/sample clinical characteristics were described
- Patient/sample selection criteria were described.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires a review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

There are limited data showing that the use of RIS to evaluate patients with the recurrent or residual disease can detect additional sites of disease better than usual care. Imaging evaluation may be useful in suspected recurrence due to rising PSA levels to localize the recurrent tumor and to determine whether the recurrent tumor is local to the prostate area, involves distant sites, or both. When the residual or recurrent disease is only local, patients may undergo postoperative radiotherapy, while when the recurrence includes distant sites, hormonal therapy would be considered. Distant hematogenous metastasis from prostate cancer most frequently involves bone but can infrequently involve other soft tissue sites. A bone scan is generally considered more sensitive than RIS for detecting bone metastases. Positive RIS findings have been reported anecdotally in abnormalities other than prostate cancer, so biopsy confirmation of unexpected distant findings may be necessary to ensure proper patient management.

Available studies are generally retrospective, descriptive reports of patterns of RIS uptake in patients with suspected recurrence. These studies, however, do not provide consistent verification of disease status, and thus the false-positive and false-negative rates in RIS studies were not well-established. While some studies have reported the percentage of cases that had associated changes in management, it is frequently difficult to determine specifically how RIS results affected management and to determine whether these changes resulted in improved net health outcomes.

Liauw et al (2008) reported on 82 patients with adenocarcinoma of the prostate treated with salvage radiotherapy for an elevated PSA level after prostatectomy. The median PSA level before radiotherapy was 0.63 ng/mL. Of the 82 patients, 47 (57%) had a RIS (ProstaScint) scan before radiotherapy, which was used for both patient selection and target delineation. Patients with a RIS scan before radiotherapy had a lower preoperative PSA level (p=0.024) and shorter follow-up (p=0.022) than those without RIS. With a median follow-up of 44 months, the biochemical control rate was 56% at 3 years and 48% at 5 years. Margin status was the only...
factor associated with a biochemical control on univariate (p=0.005) and multivariate (p=0.004) analyses. Patients who had prostate bed-only uptake on RIS (n=38) did not have improved outcomes, with biochemical control rates of 51% at 3 years and 40% at 5 years. These data would support the conclusion that patients selected for treatment with RIS would not have better biochemical outcomes.

Nagda et al (2007) reported on a series of 58 patients who had ProstaScint scans as part of an assessment of rising PSA levels after prostatectomy who were then treated with prostate bed radiotherapy.23 The 4-year biochemical relapse-free survival (BRFS) rates for patients with negative ProstaScint scans (53%), positive in the prostate bed alone (45%), or positive scan findings elsewhere (74%) did not differ significantly (p=0.51). The capromab pendetide scan status did not affect BRFS. Those with a PSA level before radiotherapy of less than 1 ng/mL had improved BRFS (p=0.003). The authors concluded that the capromab pendetide scan had a low, positive predictive value in patients with positive uptake elsewhere and the 4 year BRFS was similar to that for those who did not exhibit positive uptake elsewhere.

Proano et al (2006) reported on “early experience” outcomes among 44 patients with biochemical recurrence after radical prostatectomy who underwent a ProstaScint scan immediately before salvage radiotherapy.24 They noted improved prognosis (mean follow-up, 22 months) in patients who had a negative scan before radiotherapy but also noted that this finding was not necessarily independent of PSA level before radiotherapy.

Two other publications have raised questions about the accuracy (including sensitivity and specificity) of RIS, coregistered with CT, in imaging localized prostate cancer within the prostate gland and in detecting seminal vesicle invasion.25,26 In a prospective evaluation of 93 patients with recurrent prostate cancer, Schuster et al (2014) reported positron emission tomography-CT with the radiotracer anti-1-amino-3-fluorine 18-fluorocyclobutane-1-carboxylic acid was significantly better in detecting prostatic and extraprostatic prostate cancer recurrence than RIS single-photon emission CT plus CT imaging.27

A retrospective study by Raj et al (2002) included 252 patients with biochemical failure following radical prostatectomy (PSA level, ≤0.4 ng/mL) who had RIS performed to localize recurrence.17 In this study, 72% of subjects had a positive scan. A localized (prostatic fossa only) uptake pattern was seen in 30.6%, regional uptake pattern (regional lymph nodes plus or minus prostatic fossa and no distant disease) in 42.8%, and distant uptake noted in 29.4%. Only a minority of patients (~20%) had also received a CT scan or bone scan showing positive findings, making comparisons across technologies subject to potential bias. A uniform reference standard was not applied in this study, and detailed follow-up was available for half of the patients (132/255). The study reported sensitivity and specificity rates in a small subset of subjects (i.e., 95/252 [38%] subjects) who had some degree of verification of disease status. Reported sensitivity was 73%, and specificity was 53%. However, due to the select nature of the small subset analysis, these estimates were subject to potential verification bias and may not be considered valid measures of expected performance.

Sodee et al (2000) retrospectively analyzed 2290 RIS scans in 2154 patients with prostate cancer, either before or after treatment.11 This large multicenter study reported the rates of positive RIS scans in local, regional, and distant sites but did not provide detailed verification of results and, thus, sensitivity and specificity rates could not be determined. When the analysis was stratified by primary treatment (i.e., surgery, radiotherapy, or hormonal therapy), RIS showed uptake limited to extrapelvic nodes in 8.5% to 15.1% of patients and uptake in both pelvic and extrapelvic nodes in 22.1% to 33.2% of patients. Relatively few patients also had CT scans (n=146). When CT was compared with RIS, CT did not detect pelvic or extrapelvic nodes detected by RIS in 73% of CT cases.
Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

No randomized trials were identified, and the retrospective study by Raj et al (2002), discussed above, did not report the proportion of subjects in whom patient management was altered by RIS findings.17

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

Because the clinical validity of RIS for this indication has not been established, a chain of evidence supporting clinical utility cannot be constructed.

Section Summary: Biochemical Failure After Prostatectomy or Radiotherapy
Numerous small case series have evaluated RIS in patients with biochemical failure after curative treatment and described rates of positivity for the local and distant disease. Limitations included the generally retrospective and descriptive nature of the studies and the lack of consistent verification of disease status. Thus, the studies do not permit accurate estimation of the false-positive and false-negative rate RIS. Moreover, no studies identified demonstrated an association between RIS findings and change in patient management or improved health outcomes in this population of patients.

Summary of Evidence
For individuals who have prostate cancer and are undergoing staging before curative treatment who receive RIS with indium 111 capromab pendetide, the evidence includes diagnostic accuracy studies and a systematic review (TEC Assessment). Relevant outcomes are OS, disease-specific survival, test accuracy, and test validity. For pretreatment staging before curative treatment, the TEC Assessment found that RIS has a modest sensitivity, estimated at 50% to 75% and a moderate to high specificity, estimated at 72% to 93%. No studies have demonstrated that the use of RIS for pretreatment staging changes patient management or improves health outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have prostate cancer and have biochemical failure after curative treatment who receive RIS with indium 111 capromab pendetide, the evidence includes case series. Relevant outcomes are OS, disease-specific survival, test accuracy, and test validity. The available case series are generally retrospective, descriptive, and do not provide consistent verification of disease status. Thus, the studies do not permit accurate estimation of the false-positive and false-negative rates with RIS. There is a lack of published evidence demonstrating an association between RIS findings and change in patient management or health outcomes in this population of patients. The evidence is insufficient to determine the effects of the technology on health outcomes.

Supplemental Information
The National Comprehensive Cancer Network (v.2.2020) guidelines for prostate cancer do not mention ProstaScint or radioimmunoscintigraphy.28
American College of Radiology

In 2018, the American College of Radiology's Appropriateness Criteria rated the appropriateness of various imaging tests in men with rising prostate-specific antigen levels after prostatectomy or radiotherapy. Indium 111 capromab pendetide (ProstaScint) scans were found to be "not routinely used in the evaluation of prostate cancer recurrence" and studies "have demonstrated no benefit with use of capromab pendetide in selection of patients for local salvage therapy." It was also noted that for salvage therapy with a rising prostate-specific antigen, use of "ProstaScint provided no incremental value in appropriately selected patients compared to basic clinicopathologic factors alone."

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials

A search of ClinicalTrials.gov in June 2020 did not identify any ongoing or unpublished trials that would likely influence this review.

References

2. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Radioimmunoscintigraphy for Prostate Cancer Update. TEC Assessments. 1998;13;Tab 21.

Please provide the following documentation:

- History and physical and/or consultation notes
- Laboratory reports

Post Service (in addition to the above, please include the following):

- Procedure report

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy. Inclusion or exclusion of codes does not constitute or imply member coverage or provider reimbursement.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| CPT® | 78800| Radiopharmaceutical localization of tumor, inflammatory process or distribution of radiopharmaceutical agent(s) (includes vascular flow and blood pool imaging, when performed); planar, single area (e.g., head, neck, chest, pelvis), single day imaging
(Code revision effective 1/1/2020) |
| | 78801| Radiopharmaceutical localization of tumor, inflammatory process or distribution of radiopharmaceutical agent(s) (includes vascular flow and blood pool imaging, when performed); planar, 2 or more areas (e.g., abdomen and pelvis, head and chest), 1 or more days imaging or single area imaging over 2 or more days
(Code revision effective 1/1/2020) |
| | 78802| Radiopharmaceutical localization of tumor, inflammatory process or distribution of radiopharmaceutical agent(s) (includes vascular flow and blood pool imaging, when performed); planar, whole body, single day imaging
(Code revision effective 1/1/2020) |
| | 78803| Radiopharmaceutical localization of tumor, inflammatory process or distribution of radiopharmaceutical agent(s) (includes vascular flow and blood pool imaging, when performed); tomographic (SPECT), single area (e.g., head, neck, chest, pelvis), single day imaging
(Code revision effective 1/1/2020) |
| | 78804| Radiopharmaceutical localization of tumor, inflammatory process or distribution of radiopharmaceutical agent(s) (includes vascular flow and blood pool imaging, when performed); planar, whole body, requiring 2 or more days imaging
(Code revision effective 1/1/2020) |
| HCPCS | A9507| Indium In-111 capromab pendetide, diagnostic, per study dose, up to 10 millicuries |
Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/25/1998</td>
<td>Adopted policy from BCBSA TEC</td>
</tr>
<tr>
<td>11/05/2002</td>
<td>Coding Update</td>
</tr>
<tr>
<td>01/07/2011</td>
<td>Policy revision with position change</td>
</tr>
<tr>
<td>04/01/2011</td>
<td>Policy revision with position change</td>
</tr>
<tr>
<td>07/01/2011</td>
<td>Administrative position update</td>
</tr>
<tr>
<td>05/29/2015</td>
<td>Policy title change from Radioimmunoscintigraphy for Prostate Cancer Policy revision without position change</td>
</tr>
<tr>
<td>11/01/2016</td>
<td>Policy title change from Radioimmunoscintigraphy Imaging (Monoclonal Antibody Imaging) With Indium-111 Capromab Pendetide (ProstaScint®) for Prostate Cancer Policy revision without position change</td>
</tr>
<tr>
<td>11/01/2017</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>11/01/2018</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>11/01/2019</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>03/01/2020</td>
<td>Coding update</td>
</tr>
<tr>
<td>11/01/2020</td>
<td>Annual review. No change to policy statement. Literature review updated.</td>
</tr>
</tbody>
</table>

Definitions of Decision Determinations

Medically Necessary: Services that are Medically Necessary include only those which have been established as safe and effective, are furnished under generally accepted professional standards to treat illness, injury or medical condition, and which, as determined by Blue Shield, are: (a) consistent with Blue Shield medical policy; (b) consistent with the symptoms or diagnosis; (c) not furnished primarily for the convenience of the patient, the attending Physician or other provider; (d) furnished at the most appropriate level which can be provided safely and effectively to the patient; and (e) not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of the Member’s illness, injury, or disease.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member's health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member's eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.
Questions regarding the applicability of this policy should be directed to the Prior Authorization Department at (800) 541-6652, or the Transplant Case Management Department at (800) 637-2066 ext. 3507708 or visit the provider portal at www.blueshieldca.com/provider.

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.