Policy Statement

One time genotypic or phenotypic analysis of thiopurine methyltransferase (TPMT) and nudix hydrolase (NUDT15) may be considered **medically necessary** in either of the following situations:

I. Patients beginning therapy with azathioprine (AZA), mercaptopurine (6-MP), or thioguanine (6-TG)

II. Patients on thiopurine therapy with abnormal complete blood count (CBC) results that do not respond to dose reduction

Genotypic and/or phenotypic analysis of the TPMT and NUDT15 is considered **investigational** in all other situations.

Analysis of the metabolite markers azathioprine (AZA) and mercaptopurine (6-MP), including 6-methyl-mercaptopurine ribonucleotides (6-MMRP) and 6-thioguanine nucleotides (6-TGN), is considered **investigational**.

NOTE: Refer to Appendix A to see the policy statement changes (if any) from the previous version.

Policy Guidelines

Thiopurine methyltransferase (TPMT) and/or nudix hydrolase (NUDT15) testing cannot substitute for complete blood count (CBC) monitoring in patients receiving thiopurines. Early drug discontinuation may be considered in patients with abnormal complete blood count results. Dosage reduction is recommended in patients with reduced TPMT/NUDT15 activity. Alternative therapies may need to be considered for patients who have low or absent TPMT/NUDT15 activity (homozygous for nonfunctional alleles). Accurate phenotyping results are not possible in patients who have received recent blood transfusions. TPMT/NUDT15 genotyping and phenotyping would only need to be performed once.

Genetic Counseling

Genetic counseling is primarily aimed at patients who are at risk for inherited disorders, and experts recommend formal genetic counseling in most cases when genetic testing for an inherited condition is considered. The interpretation of the results of genetic tests and the understanding of risk factors can be very difficult and complex. Therefore, genetic counseling will assist individuals in understanding the possible benefits and harms of genetic testing, including the possible impact of the information on the individual’s family. Genetic counseling may alter the utilization of genetic testing substantially and may reduce inappropriate testing. Genetic counseling should be performed by an individual with experience and expertise in genetic medicine and genetic testing methods.

Coding

Effective April 1, 2020, there is a new CPT PLA code specific for the NT (NUDT15 and TPMT) genotyping panel, which is a pharmacogenetic blood/saliva test recommended to guide proper dosing of thiopurines (azathioprine, mercaptopurine, and thioguanine):
- **0169U**: NUDT15 (nudix hydrolase 15) and TPMT (thiopurine S-methyltransferase) (e.g., drug metabolism) gene analysis, common variants

The following CPT code is specific for the analysis of common variants of the thiopurine methyltransferase (TPMT) gene:
Pharmacogenomic and Metabolite Markers for Patients Treated With Thiopurines

- **81335**: TPMT (thiopurine S-methyltransferase) (e.g., drug metabolism), gene analysis, common variants (e.g., *2, *3)

The analysis of common variants of the thiopurine methyltransferase (TPMT) gene may also be reported with the following CPT code:
- **81401**: Molecular pathology procedure, Level 2 (e.g., 2-10 single nucleotide polymorphisms [SNPs], 1 methylated variant, or 1 somatic variant [typically using nonsequencing target variant analysis], or detection of a dynamic mutation disorder/triplet repeat)

There is a CPT code specific for the analysis of common variants of the nudix hydrolase 15 (NUDT15) gene:
- **81306**: NUDT15 (nudix hydrolase 15) (e.g., drug metabolism) gene analysis, common variant(s) (e.g., *2, *3, *4, *5, *6)

There are no specific CPT codes for metabolite markers of azathioprine, mercaptopurine, or thioguanine.

Genotypic, phenotypic, and metabolite markers are specialized laboratory tests typically performed in reference laboratories.

Description

The thiopurine class of drugs, which include azathioprine (a pro-drug for mercaptopurine), mercaptopurine, and thioguanine, are used to treat a variety of diseases; however, it is recommended the use of thiopurines be limited due to a high rate of drug toxicity. The TPMT and NUDT15 genes encode for the enzymes thiopurine S-methyltransferase (TPMT) and Nudix Hydrolase (NUDT15) respectively. These enzymes are involved in the metabolism of thiopurines. Genetic variants in TPMT and NUDT15 gene affects drug hydrolysis and hence, increases susceptibility to drug-induced toxicity. Mercaptopurine and thioguanine are directly metabolized by the thiopurine S-methyltransferase (TPMT) enzyme. Susceptibility to drug toxicity is linked to the level of TPMT activity. The variation in TPMT activity has been related to 3 distinct TPMT variants. TPMT can be assessed through genetic analysis for polymorphisms in leukocyte DNA (genotype) or by measurement of the enzyme activity in circulating red blood cells (RBCs; phenotype). NUDT15 is measured by genetic analysis only (genotype). Pharmacogenomic analysis of TPMT/NUDT15 status is proposed to identify patients at risk of thiopurine drug toxicity and adjustment of medication doses accordingly. Measurement of metabolite markers has also been proposed.

Related Policies

- N/A

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.
Regulatory Status

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments. Several thiopurine genotypes, phenotype, and metabolite tests are available under the auspices of the Clinical Laboratory Improvement Amendments. Laboratories that offer laboratory-developed tests must be licensed by the Clinical Laboratory Improvement Amendments for high-complexity testing. To date, the U.S. Food and Drug Administration (FDA) has chosen not to require any regulatory review of this test. Prometheus, a commercial laboratory, offers thiopurine genotype, phenotype, and metabolite testing for those on thiopurine therapy. The tests are referred to as Prometheus® TPMT Genetics, Prometheus® TPMT enzyme, and Prometheus® thiopurine metabolites, respectively. Other laboratories that offer TPMT genotyping include: Quest Diagnostics (TPMT Genotype); ARUP Laboratories (TPMT DNA); Specialty Laboratories (TPMT GenoTypR®); PreventionGenetics (TPMT Deficiency via the TPMTGene); Genelex (TPMT); Fulgent Genetics (TPMT); and LabCorp (TPMT enzyme activity and genotyping).

FDA Labeling on Pharmacogenomic Test for Thiopurines

The FDA has included pharmacogenomics information in the physician prescribing information (drug labels) of multiple drugs. In most cases, this information is general and lacks specific directives for clinical decision making. In the following examples, the FDA has given clear and specific directives on use of pharmacogenomic testing for azathioprine (a prodrug for mercaptopurine), mercaptopurine, and thioguanine. Therefore, evidence for these indications is not reviewed in the Rationale section.

Mercaptopurine

- Consider testing for TPMT and NUDT15 deficiency in patients who experience severe myelosuppression or repeated episodes of myelosuppression.
 - Homozygous Deficiency in either TPMT or NUDT15: Patients with homozygous deficiency of either enzyme typically require 10% or less of the recommended dosage. Reduce the recommended starting dosage in patients who are known to have homozygous TPMT or NUDT15 deficiency.
 - Heterozygous Deficiency in TPMT and/or NUDT15: Reduce the dosage based on tolerability. Most patients with heterozygous TPMT or NUDT15 deficiency tolerate recommended dosage, but some require dose reduction based on adverse reactions. Patients who are heterozygous for both TPMT and NUDT15 may require more substantial dose reductions.

Azathioprine

- Patients with TPMT and/or NUDT15 Deficiency: Consider testing for TPMT and NUDT15 deficiency in patients who experience severe bone marrow toxicities. Early drug discontinuation may be considered in patients with abnormal CBC results that do not respond to dose reduction.
 - Homozygous deficiency in either TPMT or NUDT15: Because of the risk of increased toxicity, consider alternative therapies for patients who are known to have TPMT or NUDT15 deficiency.
 - Heterozygous deficiency in TPMT and/or NUDT15: Because of the risk of increased toxicity, dosage reduction is recommended in patients known to have heterozygous deficiency of TPMT or NUDT15. Patients who are heterozygous for both TPMT and NUDT15 deficiency may require more substantial dosage reductions.

Thioguanine

- Consider testing for TPMT and NUDT15 deficiency in patients who experience severe bone marrow toxicities or repeated episodes of myelosuppression.
- Evaluate patients with repeated severe myelosuppression for TPMT or NUDT15 deficiency. TPMT genotyping or phenotyping (red blood cell TPMT activity) and NUDT15 genotyping can identify patients who have reduced activity of these enzymes. Patients with homozygous TPMT or NUDT15 deficiency require substantial dosage reductions.

Rationale

Background

Thiopurines

Thiopurines or purine analogues are immunomodulators. They include azathioprine (Imuran), mercaptopurine (6-MP; Purinethol), and thioguanine (6-TG; Tabloid). Thiopurines are used to treat malignancies, rheumatic diseases, dermatologic conditions, and inflammatory bowel disease, and are used in solid organ transplantation. They are considered an effective immunosuppressive treatment of inflammatory bowel disease, particularly in patients with corticosteroid-resistant disease. However, the use of thiopurines is limited by both long onset of action (3-4 months) and drug toxicities, which include hepatotoxicity, bone marrow suppression, pancreatitis, and allergic reactions.

Thiopurines are metabolized by a complex pathway to several metabolites including 6-thioguanine (6-TG) and 6-methylmercaptopurine (6-MMP). Thiopurine methyltransferase (TPMT) is one of the key enzymes in thiopurine metabolism. Patients with low or absent TPMT enzyme activity can develop bone marrow toxicity with thiopurine therapy due to excess production of 6-TG metabolites, while elevated 6-MMP levels have been associated with hepatotoxicity. In population studies, the activity of the TPMT enzyme has been shown to be trimodal, with 90% of subjects having high activity, 10% intermediate activity, and 0.3% with low or no activity. Variants in another metabolizing enzyme, NUDT15 (nudix hydrolase, NUDIX 15), have been identified that strongly influence thiopurine tolerance in patients with IBD. Homozygous carriers of NUDT15 variants are intolerant of thiopurine compounds because of risk of bone marrow suppression. Individuals with this variant are sensitive to 6-MP and have tolerated only 8 percent of the standard dose. Several variant alleles have been identified with varying prevalence among different populations and varying degrees of functional effects. NUDT deficiency is most common among East Asians (22.6%), followed by South Asians (13.6%), and Native American populations (12.5%-21.2%). Studies in other populations are ongoing.

Phenotype Testing for Thiopurine Methyltransferase Activity

The testing involves incubation of RBC lysate in a multistep substrate cocktail. The enzymatically generated thiomethylated products are measured by liquid chromatography tandem mass spectrometry to produce an activity profile for thiopurine methyltransferase. Multiple assays are available and use different reference standards. Results are based on the quantitative activity level of TPMT (in categories) along with clinical interpretation. Two commercial tests are illustrated below as examples:

ARUP Labs:

- **Normal TPMT activity levels**: Individuals are predicted to be at low risk of bone marrow toxicity (myelosuppression) as a consequence of standard thiopurine therapy; no dose adjustment is recommended.
- **Intermediate TPMT activity levels**: Individuals are predicted to be at intermediate risk of bone marrow toxicity (myelosuppression), as a consequence of standard thiopurine therapy; a dose reduction and therapeutic drug management is recommended.
- **Low TPMT activity**: Individuals are predicted to be at high risk of bone marrow toxicity (myelosuppression) as a consequence of standard thiopurine dosing. It is recommended to avoid the use of thiopurine drugs.
- **High TPMT activity**: Individuals are not predicted to be at risk for bone marrow toxicity (myelosuppression) as a consequence of standard thiopurine dosing, but may be at risk for therapeutic failure due to excessive inactivation of thiopurine drugs. Individuals may require higher than the normal standard dose. Therapeutic drug management is recommended.
Lab Corp:
- Normal: 15.1 to 26.4 units/ml RBC
- Heterozygous for low TPMT variant: 6.3 to 15.0 units/ml RBC
- Homozygous for low TPMT variant: <6.3 to units/ml RBC

Genotype Testing for Thiopurine Methyltransferase Activity/Nudix Hydrolase (NUDT15) Gene Polymorphism
The genotypic analysis of the TPMT/NUDT15 gene is based on polymerase chain reaction technology to detect distinct variants. These are listed in Table 1.

<table>
<thead>
<tr>
<th>TPMT Allele</th>
<th>cDNA Nucleotide Change</th>
<th>Amino Acid Change</th>
<th>Effect on Enzyme Metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1</td>
<td>None (wild type)</td>
<td>None (wild type)</td>
<td>Normal function</td>
</tr>
<tr>
<td>*2</td>
<td>c.238G>C</td>
<td>p.Ala80Pro (p.A80P)</td>
<td>No activity</td>
</tr>
<tr>
<td>*3A</td>
<td>c.460G>A and c.719A>G</td>
<td>p.Ala154Thr (p.A154T) and p.Tyr240Cys (p.Y240C)</td>
<td>No activity</td>
</tr>
<tr>
<td>*3B</td>
<td>c.460G>A</td>
<td>p.Ala154Thr (p.A154T)</td>
<td>No activity</td>
</tr>
<tr>
<td>*3C</td>
<td>c.719A>G</td>
<td>p.Tyr240Cys (p.Y240C)</td>
<td>No activity</td>
</tr>
<tr>
<td>*4</td>
<td>c.626-1G>A</td>
<td>Not applicable, splice site</td>
<td>No activity</td>
</tr>
<tr>
<td>*5</td>
<td>c.146T>C</td>
<td>p.Leu49Ser (p.L49S)</td>
<td>No activity</td>
</tr>
<tr>
<td>*12</td>
<td>c.374C>T</td>
<td>p.Ser125Leu (p.S125L)</td>
<td>Reduced activity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NUDT15 Allele</th>
<th>cDNA Nucleotide Change</th>
<th>Amino Acid Change</th>
<th>Effect on Enzyme Metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None (wild type)</td>
<td>None (wild type)</td>
<td>Normal activity</td>
</tr>
<tr>
<td>*2 or *3</td>
<td>c.415C>T</td>
<td>p.Arg139Cys (p.R139C)</td>
<td>No activity</td>
</tr>
<tr>
<td>*4</td>
<td>c.416G>A</td>
<td>p.Arg139His (p.R139H)</td>
<td>No activity</td>
</tr>
</tbody>
</table>

Metabolite Markers
The therapeutic effect of thiopurines has been associated with the level of active 6-TGN metabolites, and hepatotoxicity has been associated with higher levels of the inactive metabolites 6-MMP and 6-methylmercaptopurine ribonucleotides. Therefore, it has been proposed that therapeutic monitoring of these metabolites may improve patient outcomes by identifying the reason for a non-response or sub-optimal response. Conversely by measuring 6-MMP levels, a subgroup of patients can be identified who preferentially convert 6-MP to 6-MMP (toxic metabolite) and often do not achieve sufficient 6-TGN levels. This group of patients, often described as “shunters,” may be susceptible to hepatotoxicity because thiopurine dose escalation leads to 6-MMP accumulation.

Therapeutic monitoring of thiopurine metabolite levels is typically performed in patients with IBD as 1) reactive strategy in response to either lack of clinical improvement or observed treatment-related toxicity 2) routine proactive clinical care in patients with quiescent disease.

Literature Review
The primary goal of pharmacogenomics testing and personalized medicine is to achieve better clinical outcomes compared with the standard of care. Drug response varies greatly between individuals, and genetic factors are known to play a role. However, in most cases, the genetic variation only explains a modest portion of the variance in the individual response because clinical outcomes are also affected by a wide variety of factors including alternate pathways of metabolism and patient- and disease-related factors that may affect absorption, distribution, and elimination of the drug. Therefore, assessment of clinical utility cannot be made by a chain of evidence from clinical validity data alone. In such cases, evidence evaluation requires studies that directly demonstrate that the pharmacogenomic test alters clinical outcomes; it is not sufficient to demonstrate that the test predicts a disorder or a phenotype.
Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life, and ability to function—including benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens, and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of technology, two domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Thiopurine Metabolite Monitoring

Clinical Context and Therapy Purpose

The purpose of monitoring thiopurine metabolite (6-TGN and 6-MMP) levels in patients treated with thiopurines is to provide an advantage over no therapeutic drug monitoring with empiric treatment changes or standard weight-based dosing.

Potential benefits of monitoring thiopurine metabolite levels may include the following:

- to guide treatment changes in the event of observed drug toxicity or lack of efficacy (reactive strategy)
- routine use to guide thiopurine dosing (proactive strategy)

The question addressed in this evidence review is: Does monitoring of thiopurine metabolite (6-TGN and 6-MMP) levels in patients treated with thiopurines improve the net health outcomes in patients who are treated with thiopurines?

The following PICO was used to select literature to inform this review.

Populations

The relevant population of interest is patients treated with thiopurines.

Interventions

The therapy being considered is monitoring of thiopurine metabolite levels. Commercial tests are available from multiple labs and companies. Metabolite markers are measured from red blood cell samples using high-performance liquid chromatography.

Comparators

The relevant comparator is no monitoring for thiopurine metabolite levels with empiric treatment changes or standard weight-based dosing.

Outcomes

The general outcomes of interest are change in disease status, treatment-related mortality and treatment-related morbidity.

Potential beneficial outcomes of interest are improvement in disease status and reduction or elimination of toxicity associated with thiopurines (e.g., bone marrow toxicity, hepatotoxicity, pancreatitis, gastric intolerance, skin reaction). In contrast, empiric treatment changes, such as escalation of therapy in patients with suboptimal response, may result in excessively high 6-TGN
level, which increases risk of leukopenia, or excessively high 6-MMP levels due to shunting, which increases risk of hepatotoxicity. Inappropriate treatment changes can also potentially delay use of more effective therapy.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for randomized controlled trials;
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Studies with duplicative or overlapping populations were excluded.

The American Gastroenterological Association published a systematic review on the role of therapeutic drug monitoring in the management of inflammatory bowel diseases in 2017. The authors did not identify any randomized trials or prospective comparative studies in thiopurine treated IBD patients comparing reactive therapeutic drug monitoring to guide treatment changes vs empiric treatment changes. Two small, randomized studies that evaluated routine therapeutic drug monitoring to guide thiopurine dosing compared to empiric weight-based dosing were identified.

The first was a double-blind RCT conducted in the United States using TPMT phenotype testing to guide initial dosing, followed by prospective 6-TGN guided dose adaptation compared with empiric weight-based dosing with gradual dose escalation if well tolerated (regardless of TPMT activity) in control arm. The second RCT was an open-label randomized trial conducted in Germany which investigated scheduled thiopurine metabolite testing with successive adaptation of azathioprine therapy to a target 6-TGN concentration of 250 to 400 pmol/8 × 10^8 RBCs vs standard AZA weight based dosing (2.5 mg/kg body weight). Both studies were terminated early due to slow recruitment and failure to meet prespecified enrollment targets. Additionally, there was a high attrition rate in both trials (33% to 46%), although the analyses were conducted in intention-to-treat manner with worst-case scenario imputation. In the pooled analysis of both trials reported in the systematic review, there was a numerically higher proportion of patients achieving clinical remission in patients who underwent routine TDM-guided dose adaptation compared with standard weight-based dosing (21 of 50 [42%] vs 18 of 57 [31.6%]) at 16 weeks, but the difference was not statistically significant (RR, 1.44; 95% CI, 0.59 to 3.52). The rate of serious adverse events (requiring discontinuation of therapy) was comparable between the 2 arms (TDM-guided dose adaptation vs empiric dosing: 16 of 50 [32.0%] vs 15 of 57 [26.3%]; RR, 1.20; 95% CI, 0.50 to 2.91). The systematic review concluded overall quality of evidence as very low quality.

Section Summary: Thiopurine Metabolite Monitoring

The evidence for the use of reactive thiopurine metabolite monitoring to guide treatment changes in patients being treated with thiopurines includes only retrospective studies that were not included in this review. The evidence for the use of routine thiopurine drug monitoring to guide treatment changes in patients being treated with thiopurines includes 2 small, randomized studies. Both studies were terminated early due to slow recruitment and failure to meet prespecified enrollment targets. Additionally, there was high attrition rate in both trials (33% to 46%). The pooled analysis of both trials reported in the systematic review did not show a statistically significant difference in clinical remission in patients who underwent routine TDM-guided dose adaptation compared with standard weight-based dosing. The rate of serious adverse events (requiring discontinuation of therapy) was also comparable between the 2 arms. Based on 2 small RCTs at high risk of bias, there is uncertainty whether reactive or routine thiopurine metabolite monitoring to guide treatment changes are superior to empirical clinical-based or standard weight-based dosing changes.
Summary of Evidence
For individuals who receive thiopurines metabolite monitoring to guide treatment changes, the evidence includes 2 RCTs. Relevant outcomes are change in disease status, treatment-related mortality and treatment-related morbidity. The evidence for the use of reactive thiopurine metabolite monitoring to guide treatment changes includes only retrospective studies that were not included in this review. The evidence for the use of routine thiopurine drug monitoring to guide treatment changes in patients being treated with thiopurines includes 2 small, randomized studies. Both studies were terminated early due to slow recruitment and failure to meet prespecified enrollment targets. Additionally, there was high attrition rate in both trials (33% to 46%). The pooled analysis of both trials reported in the systematic review did not show statistical significant difference in clinical remission in patients who underwent routine TDM-guided dose adaptation compared with standard weight-based dosing. The rate of serious adverse events (requiring discontinuation of therapy) was also comparable between the 2 arms. Based on 2 small RCTs at high risk of bias, there is uncertainty whether reactive or routine thiopurine metabolite monitoring to guide treatment changes are superior to empirical clinical-based or standard weight-based dosing changes. The evidence is insufficient to determine the effects of technology on net health outcomes.

Supplemental Information
Practice Guidelines and Position Statements

National Comprehensive Cancer Network
National Comprehensive Cancer Network (v.1.2020) guidelines on adult and adolescent/young adult acute lymphoblastic leukemia state:
• “For patients receiving 6-MP [mercaptopurine] consider testing for TPMT [thiopurine methyltransferase] gene polymorphisms, particularly in patients who develop severe neutropenia after starting 6-MP.”

National Comprehensive Cancer Network (v.1.2021) guidelines for pediatric acute lymphoblastic leukemia state:
• Genetic testing for no function alleles of TPMT and NUDT-15 should be considered prior to the initiation of thiopurine therapy, if excessive toxicity is encountered following treatment with thiopurines.
• Dosing recommendation for patients who are heterozygous or homozygous for TPMT no function allele are summarized in Table 2.
• For patients homozygous for normal function TPMT and NUDT-15, who do not appear to tolerate thiopurines, consider measuring erythrocyte thiopurine metabolites and/or erythrocyte TPMT activity. Genetic testing may fail to identify rare or previously undiscovered no function alleles.

Table 2. Dosing Guidelines for Thiopurines on TPMT Phenotype

<table>
<thead>
<tr>
<th>Genotype/Phenotype</th>
<th>Dosing Recommendations for 6-MP</th>
<th>Dosing Recommendations for 6-TG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homozygous for normal function alleles (e.g., *1/*1); normal metabolizer</td>
<td>Starting dose should be based on treatment protocol (typically 75 mg/m²/day). Allow 2 weeks to achieve steady state prior to making dosing adjustments</td>
<td>Starting dose should be based on treatment protocol (typically 60 mg/m²/day). Allow 2 weeks to achieve steady state prior to making dosing adjustments</td>
</tr>
<tr>
<td>Heterozygous for no function alleles (e.g., *1/*2, 3A, 3B, 3C or 4); intermediate metabolizer</td>
<td>Starting dose at 30 to 80% of full dose. Adjust dose based on degree of myelosuppression as dictated by protocol. Allow 2 to 4 weeks to achieve steady state</td>
<td>Reduce starting dose by 30 to 80%.* Adjust dose based on degree of myelosuppression as dictated by protocol. Allow 2 to 4 weeks to achieve steady state prior to making dosing adjustments</td>
</tr>
</tbody>
</table>
Pharmacogenomic and Metabolite Markers for Patients Treated With Thiopurines

<table>
<thead>
<tr>
<th>Genotype/Phenotype</th>
<th>Dosing Recommendations for 6-MP</th>
<th>Dosing Recommendations for 6-TG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homozygous for no function alleles (e.g., *2/*3A, *3/*4); poor metabolizer</td>
<td>Starting dose at approx 10% of full dose. Adjust dose based on degree of myelosuppression as dictated by protocol. Allow 4 to 6 weeks to achieve steady state prior to making dosing adjustments.</td>
<td>Starting dose at approx 10% of full dose as dictated by protocol. Allow 4 to 6 weeks to achieve steady state prior to making dosing adjustments.</td>
</tr>
</tbody>
</table>

For patients already receiving reduced starting dose of thiopurines (<75 mg/m²/day of 6-MP or <40 mg/m²/day of 6-TG) further dose reduction may not be needed.

North American Society for Pediatric Gastroenterology, Hepatology and Nutrition
The North American Society for Pediatric Gastroenterology, Hepatology and Nutrition (2013) on inflammatory bowel disease (IBD) published consensus recommendations on the role of the TPMT enzyme and thiopurine metabolite testing in pediatric IBD. Recommendations (high and moderate) included:

1. “TPMT testing is recommended before initiation of TPs [thiopurines] to identify individuals who are homozygous recessive or have extremely low TPMT activity....
2. Individuals who are homozygous recessive or have extremely low TPMT activity should avoid use of TPs because of concerns for significant leucopenia.
3. ...All individuals on TPs should have routine monitoring of CBC [complete blood cell] and WBC [white blood cell] counts to evaluate for leucopenia regardless of TPMT testing results.
4. Metabolite testing can be used to determine adherence to TP therapy.
5. Metabolite testing can be used to guide dosing increases or modifications in patients with active disease....
6. Routine and repeat metabolite testing has little or no role in patients who are doing well and taking an acceptable dose of a TP.”

American Gastroenterological Association Institute
Recommendations from the American Gastroenterological Association Institute (2017) guidelines on therapeutic drug monitoring in IBD are summarized in Table 3.

<table>
<thead>
<tr>
<th>Key Question</th>
<th>Conclusion</th>
<th>QOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>In patients with IBD being started on thiopurines, is routine TPMT measurement (to guide dosing) superior to no TPMT measurement (with empiric weight-based dosing of thiopurines)?</td>
<td>Benefit is uncertain but may avoid serious harm in a small fraction of patients</td>
<td>Low</td>
</tr>
<tr>
<td>In patients with active IBD treated with thiopurines or with side effects thought to be due to thiopurine toxicity, is reactive therapeutic drug monitoring to guide treatment changes superior to no therapeutic drug monitoring with empiric treatment changes?</td>
<td>May be a benefit</td>
<td>Very low</td>
</tr>
<tr>
<td>In patients with IBD treated with thiopurines, is routine therapeutic drug monitoring to guide thiopurine dosing superior to empiric weight-based dosing?</td>
<td>Benefit is uncertain</td>
<td>Very low</td>
</tr>
</tbody>
</table>

AGA: American Gastroenterological Association; IBD: inflammatory bowel disease; QOE: quality of evidence; TPMT: thiopurine methyltransferase.

U.S. Preventive Services Task Force Recommendations
Not applicable.
Medicare National Coverage
There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials
Some currently ongoing and unpublished trials that might influence this review are listed in Table 4.

Table 4. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpublished</td>
<td>Effectiveness of Thiopurine Dose Optimization by NUDT15 R139C on Reducing Thiopurine-Induced Leucopenia in Inflammatory Bowel Disease</td>
<td>400</td>
<td>Aug 2018 (ongoing; last updated May 2018)</td>
</tr>
<tr>
<td>NCT03093818</td>
<td>PREemptive Pharmacogenomic Testing for Preventing Adverse Drug REactions (PREPARE)</td>
<td>6892</td>
<td>Dec 2019</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

References

Documentation for Clinical Review

Please provide the following documentation:

- History and physical and/or consultation notes including:
 - Tests required
 - Purpose of testing
 - Treatment plan
- Laboratory report(s)

Post Service (in addition to the above, please include the following):
- Results/reports of tests performed

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy. Inclusion or exclusion of codes does not constitute or imply member coverage or provider reimbursement.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0169U</td>
<td>NUDT15 (nudix hydrolase 15) and TPMT (thiopurine S-methyltransferase) (e.g., drug metabolism) gene analysis, common variants (Code effective 4/1/2020)</td>
</tr>
<tr>
<td></td>
<td>81306</td>
<td>NUDT15 (nudix hydrolase 15) (e.g., drug metabolism) gene analysis, common variant(s) (e.g., *2, *3, *4, *5, *6)</td>
</tr>
<tr>
<td></td>
<td>81335</td>
<td>TPMT (thiopurine S-methyltransferase) (e.g., drug metabolism), gene analysis, common variants (e.g., *2, *3)</td>
</tr>
<tr>
<td></td>
<td>81401</td>
<td>Molecular Pathology Procedure Level 2</td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/07/2006</td>
<td>New Policy Adoption</td>
</tr>
<tr>
<td>01/07/2011</td>
<td>Policy title change from Pharmacogenomic and Metabolite Markers for Patients Treated with Azathioprine (6-MP)</td>
</tr>
<tr>
<td></td>
<td>Policy revision with position change</td>
</tr>
<tr>
<td>02/22/2013</td>
<td>Coding update</td>
</tr>
<tr>
<td>06/30/2015</td>
<td>Coding update</td>
</tr>
</tbody>
</table>
Definitions of Decision Determinations

Medically Necessary: Services that are Medically Necessary include only those which have been established as safe and effective, are furnished under generally accepted professional standards to treat illness, injury or medical condition, and which, as determined by Blue Shield, are: (a) consistent with Blue Shield medical policy; (b) consistent with the symptoms or diagnosis; (c) not furnished primarily for the convenience of the patient, the attending Physician or other provider; (d) furnished at the most appropriate level which can be provided safely and effectively to the patient; and (e) not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of the Member’s illness, injury, or disease.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member's health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member’s eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department at (800) 541-6652, or the Transplant Case Management Department at (800) 637-2066 ext. 3507708 or visit the provider portal at www.blueshieldca.com/provider.

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.
Appendix A

| POLICY STATEMENT |
|------------------|------------------|
| **BEFORE** | **AFTER** |
| **Pharmacogenomic and Metabolite Markers for Patients Treated With Thiopurines 2.04.19** | **Pharmacogenomic and Metabolite Markers for Patients Treated With Thiopurines 2.04.19** |

Policy Statement:
One-time genotypic or phenotypic analysis of the thiopurine methyltransferase (TPMT) enzyme may be considered medically necessary in either of the following situations:
- Patients beginning therapy with azathioprine (AZA), mercaptopurine (6-MP), or thioguanine (6-TG)
- Patients on thiopurine therapy with abnormal complete blood count (CBC) results that do not respond to dose reduction

Genotypic and/or phenotypic analysis of the TPMT enzyme is considered investigational in all other situations.

Analysis of the metabolite markers azathioprine (AZA) and mercaptopurine (6-MP), including 6-methyl-mercaptopurine ribonucleotides (6-MMRP) and 6-thioguanine nucleotides (6-TGN), is considered investigational.

Policy Statement:
One-time genotypic or phenotypic analysis of thiopurine methyltransferase (TPMT) and nudix hydrolase (NUDT15) may be considered medically necessary in either of the following situations:

I. Patients beginning therapy with azathioprine (AZA), mercaptopurine (6-MP), or thioguanine (6-TG)
II. Patients on thiopurine therapy with abnormal complete blood count (CBC) results that do not respond to dose reduction

Genotypic and/or phenotypic analysis of the TPMT and NUDT15 is considered investigational in all other situations.

Analysis of the metabolite markers azathioprine (AZA) and mercaptopurine (6-MP), including 6-methyl-mercaptopurine ribonucleotides (6-MMRP) and 6-thioguanine nucleotides (6-TGN), is considered investigational.