Policy Statement

Magnetic Resonance Imaging (MRI) for Screening Uses

I. MRI of the breast may be considered medically necessary for breast cancer screening of an individual with any of the following conditions:
 A. Lobular carcinoma in situ
 B. A known BRCA1 or BRCA2 variant
 C. High risk of BRCA1 or BRCA2 variant due to a known presence of the variant in relatives
 D. Documentation of any of the following:
 1. Gene variant associated with high risk, e.g., TP53 (Li-Fraumeni syndrome), PTEN (Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome), CDH1, and STK11, ATM, CHEK2, and PALB2
 2. A first-degree relative with a gene variant associated with high risk, e.g., TP53 (Li-Fraumeni syndrome), PTEN (Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome), CDH1, and STK11, ATM, CHEK2, and PALB2
 E. High risk (lifetime risk about greater than or equal to 20% or 5-year risk of greater than or equal to 3%) of developing breast cancer as identified by models that are largely defined by family history as documented by the provider
 F. Received radiotherapy to the chest between 10 and 30 years of age

MRI for Detection Uses

II. MRI of the breast may be considered medically necessary for any of the following:
 A. Suspected occult breast primary tumor in individuals with axillary nodal adenocarcinoma (i.e., negative mammography and physical exam).
 B. A new diagnosis of breast cancer to evaluate the contralateral breast with both of the following:
 1. Clinical exam is normal
 2. Mammographic findings are normal

MRI for Treatment-Related Uses

III. MRI of the breast for treatment-related issues may be considered medically necessary for any of the following:
 A. Preoperative tumor mapping of the involved (ipsilateral) breast to evaluate the presence of multicentric disease in individuals with clinically localized breast cancer who are candidates for breast conservation therapy
 B. Presurgical planning in individuals with locally advanced breast cancer (before and after completion of neoadjuvant chemotherapy) to permit tumor localization and characterization
 C. To determine the presence of pectoralis major muscle/chest wall invasion in individuals with posteriorly located tumors
 D. To evaluate a documented abnormality of the breast before obtaining an MRI-guided biopsy when there is documentation that other methods, such as palpation or ultrasound, are not able to localize the lesion for biopsy.

IV. MRI of the breast is considered investigational for any of the following indications:
 A. Routine screening for an average-risk individual
B. Screening for breast cancer when the sensitivity of mammography (i.e., mammography using low-dose x-rays for imaging) is limited (i.e., dense breasts, breast implants, scarring after breast cancer treatment)

C. The test is to diagnose low-suspicion findings on conventional testing that are not indicated for immediate biopsy and referred for short-interval follow-up

D. The test is to diagnose a suspicious breast lesion in order to avoid biopsy

E. Determining the level of response during neoadjuvant chemotherapy in individuals with locally advanced breast cancer

F. Evaluating for residual tumor in individuals with positive margins after initial lumpectomy or breast conservation surgery

NOTE: Refer to Appendix A to see the policy statement changes (if any) from the previous version.

Policy Guidelines

National Comprehensive Cancer Network (NCCN)

High-risk Considerations

There is no standardized method for determining a woman's risk of breast cancer that incorporates all possible risk factors. Clinical practice guidelines offer guidance on factors known to individually indicate a high risk of breast cancer (See the Supplemental Information section).

A number of factors may increase the risk of breast cancer but do not by themselves indicate high risk. It is possible that combinations of factors may be indicative of high risk, but it is not possible to quantitate estimates of risk. As a result, it may be necessary to individualize the estimate of risk, whereby one would need to take into account the numerous risk factors. A number of risk factors, not individually indicating high risk, are included in the National Cancer Institute Breast Cancer Risk Assessment Tool (also called the Gail model). Risk factors in the model can be accessed online (https://bcrisktool.cancer.gov/).

General

A first-degree relative is defined as the parents, brothers, sisters, or children of an individual.

Considerations for Performing Magnetic Resonance Imaging

Breast magnetic resonance imaging (MRI) exams should be performed and interpreted by an expert breast imaging team working with the multidisciplinary oncology treatment team.

Breast MRI exams require a dedicated breast coil and the use of contrast agents by radiologists familiar with the optimal timing sequences and other technical aspects of image interpretation. The breast MRI center also should have the ability to perform MRI-guided biopsy and/or wire localization of findings detected by MRI. Since these are standard, documentation is not needed for approval (unless something unusual is noted that is of concern). CPT codes 77048 (unilateral) or 77049 (bilateral) would be used for cancer detection.

Considerations for Preoperative MRI

Preoperative MRI in patients with localized disease results in higher rates of mastectomy and lower rates of breast-conserving therapy. There is uncertainty from the available evidence on whether outcomes are improved by changing to a more extensive operation. If biopsies are performed on all MRI-identified lesions, and if shared patient decision making is used for altering the surgical approach, then the probability of improved outcomes is increased.

Consideration of BRCA1 and BRCA2 gene mutation testing should be given for women who have a family history suspected of having the BRCA1 or BRCA2 mutation, which has not been identified. (For
Risk Assessment Tools
A number of risk assessment tools based mainly on family history can assist practitioners in estimating breast cancer risk and include the Claus (1), modified Gail (2), Tyrer-Cuzick (3), and BRCAPRO (4) models. The National Cancer Institute (NCI) Breast Cancer Risk Assessment Tool74 is available at https://bcrisktool.cancer.gov/

Note: The tool should not be used to calculate breast cancer risk for women who have already had a diagnosis of breast cancer, lobular carcinoma in situ (LCIS), or ductal carcinoma in situ (DCIS).

The Breast Imaging Reporting and Data System (BI-RADS) Classification
The Breast Imaging Reporting and Data System (BI-RADS) provides a standardized classification system for mammograms75:

<table>
<thead>
<tr>
<th>BI-RADS Category</th>
<th>Assessment</th>
<th>Clinical Management Recommendation(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Incomplete</td>
<td>Additional imaging evaluation needed before final assessment</td>
</tr>
<tr>
<td>1</td>
<td>Negative</td>
<td>No lesion found (routine follow-up)</td>
</tr>
<tr>
<td>2</td>
<td>Benign finding</td>
<td>No malignant features; e.g. cyst (routine follow-up for age, clinical management)</td>
</tr>
<tr>
<td>3</td>
<td>Probably benign finding</td>
<td>Malignancy is highly unlikely, e.g. fibroadenoma (initial short interval follow-up)</td>
</tr>
<tr>
<td>4</td>
<td>Suspicious abnormality</td>
<td>Low to moderate probability of cancer, biopsy should be considered</td>
</tr>
<tr>
<td>5</td>
<td>Highly suggestive of malignancy</td>
<td>Almost certainly cancer, appropriate action should be taken</td>
</tr>
<tr>
<td>6</td>
<td>Known cancer</td>
<td>Biopsy proven malignancy, prior to institution of therapy</td>
</tr>
</tbody>
</table>

Coding
The following CPT codes describe magnetic resonance imaging of the breast:

- **77046**: Magnetic resonance imaging, breast, without contrast material; unilateral
- **77047**: Magnetic resonance imaging, breast, without contrast material; bilateral
- **77048**: Magnetic resonance imaging, breast, without and with contrast material(s), including computer-aided detection (CAD real-time lesion detection, characterization and pharmacokinetic analysis), when performed; unilateral
- **77049**: Magnetic resonance imaging, breast, without and with contrast material(s), including computer-aided detection (CAD real-time lesion detection, characterization and pharmacokinetic analysis), when performed; bilateral

Description
Magnetic resonance imaging (MRI) of the breast is performed using scanners and intravenous imaging contrast agents in combination with specialized breast coils. This evidence review only addresses the use of breast MRI for clinical indications related to the detection or diagnosis of breast cancer.

Related Policies
- N/A
Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

Regulatory Status

An MRI of the breast can be performed using commercially available magnetic resonance scanners and intravenous magnetic resonance contrast agents. Specialized breast coils such as the Access Breast Coil 4/SMS (Confirma) and magnetic resonance-compatible equipment for performing biopsy have been developed and cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process. The FDA determined that these devices are substantially equivalent to predicate devices for use "in conjunction with a magnetic resonance imager (MRI) to produce diagnostic and interventional images of the breast, chest wall and axillary tissues that can be interpreted by a trained physician."3

Rationale

Background
Health Disparities in Breast Cancer
Based on data from 2014 through 2018, age-adjusted breast cancer mortality is approximately 40% higher among Black women compared to non-Hispanic White women in the United States (27.7 vs. 20.0 deaths per 100,000 women), despite a lower overall incidence of breast cancer among Black women (125.8 vs. 139.2 cases per 100,000 women).1 Experts postulate that this divergence in mortality may be related to access issues; Black women are more likely than White women to lack health insurance limiting access to screening and appropriate therapies. Socioeconomic status is also a driver in health and health outcome disparities related to breast cancer.2 Women with low incomes have significantly lower rates of breast cancer screening, a higher probability of late-stage diagnosis, and are less likely to receive high quality care, resulting in higher mortality from breast cancer.

Magnetic Resonance Imaging
Magnetic resonance imaging (MRI) of the breast can be used to screen, detect, and/or diagnose breast cancer. An MRI can be used as a replacement for mammography screening, or as an additional imaging test alone, or in combination with other imaging modalities. Each potential use is described below.

Literature Review
Evidence reviews assess whether a medical test is clinically useful. A useful test provides information to make a clinical management decision that improves the net health outcome. That is, the balance of benefits and harms is better when the test is used to manage the condition than when another test or no test is used to manage the condition.

The first step in assessing a medical test is to formulate the clinical context and purpose of the test. The test must be technically reliable, clinically valid, and clinically useful for that purpose. Evidence reviews assess the evidence on whether a test is clinically valid and clinically useful. Technical
reliability is outside the scope of these reviews, and credible information on technical reliability is available from other sources.

Promotion of greater diversity and inclusion in clinical research of historically marginalized groups (e.g., People of Color [African-American, Asian, Black, Latino and Native American]; LGBTQIA (Lesbian, Gay, Bisexual, Transgender, Queer, Intersex, Asexual); Women; and People with Disabilities [Physical and Invisible]) allows policy populations to be more reflective of and findings more applicable to our diverse members. While we also strive to use inclusive language related to these groups in our policies, use of gender-specific nouns (e.g., women, men, sisters, etc.) will continue when reflective of language used in publications describing study populations.

Screening Uses

Screening Individuals at High-Risk of Breast Cancer

Clinical Context and Test Purpose

Screening uses include screening for breast cancer in patients who are at high genetic risk for breast cancer. Magnetic resonance imaging (MRI) of the breast has been investigated as a screening tool in specific higher-risk subgroups of patients. First, it has been studied in patients considered to be at high genetic risk of breast cancer, such as women with known BRCA1 or BRCA2 genetic variants or with a family history consistent with a hereditary pattern of breast cancer. Screening for breast cancer often begins at an earlier age in these patients, and mammography is considered less sensitive in younger patients due to the prevalence of dense breast tissue.

The questions addressed in this portion of the evidence review:

- Does the use of MRI as an adjunct to screening for breast cancer improve the net health outcome of patients at high-risk of breast cancer compared with standard mammographic techniques?
- Is this degree of increased accuracy likely to improve net health outcomes via earlier diagnosis and treatment?

The following PICO was used to select literature to inform this review.

Populations
The population of interest is patients at high-risk of developing breast cancer.

Interventions
The intervention of interest is MRI as an adjunct to screening with mammography.

Comparators
The following test is currently being used to make decisions about managing breast cancer: mammography alone.

Outcomes
The outcomes of interest for diagnostic accuracy include test accuracy and test validity (i.e., sensitivity, specificity). Primary outcomes of interest for clinical utility are overall mortality and breast cancer-specific mortality. Another outcome of interest for clinical utility is resource utilization (e.g., need for additional testing or procedures).

Breast MRI is performed as an adjunct to routine screening; timing can be guided by national guidelines on breast cancer screening (see Supplemental Information section).
Study Selection Criteria
This evidence review focuses on systematic reviews. For the evaluation of the clinical validity of MRI as an adjunct to screening with mammography, we sought systematic reviews that focused on studies meeting the following eligibility criteria:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
- Included a suitable reference standard
- Patient/sample clinical characteristics were described
- Patient/sample selection criteria were described.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Review of Evidence
Systematic Reviews
Three systematic reviews identified have included women at high-risk of developing breast cancer. Warner et al (2008) reviewed 11 studies published through 2008.4 Two reviews by Phi et al (2015, 2017) reported 2 individual patient data meta-analyses from the same 6 studies published between 2010 and 2013.5,6 Phi et al (2015) included women with BRCA1 or BRCA2 variants and Phi et al (2017) included women with a strong family history of breast cancer without a known variant. Ding et al (2023) included women with BRCA1 or BRCA2 variants, personal or family history of breast or ovarian cancer, or history of prior chest irradiation.7 Characteristics of the systematic reviews are shown in Table 1.

Table 1. Characteristics of Systematic Reviews Assessing Magnetic Resonance Imaging Screening in High-Risk Women

<table>
<thead>
<tr>
<th>Study</th>
<th>Dates</th>
<th>Studies</th>
<th>Participants</th>
<th>N (Range)</th>
<th>Design</th>
<th>Reference Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ding et al (2023)7</td>
<td>2000-2021</td>
<td>18</td>
<td>Women with BRCA1 or BRCA2 variants, family or personal history of breast or ovarian cancer, history of chest irradiation</td>
<td>1799 (NR)</td>
<td>Prospective and retrospective</td>
<td>Pathological examination</td>
</tr>
<tr>
<td>Phi et al (2017)6</td>
<td>2010-2013</td>
<td>6</td>
<td>Women with a family history of breast cancer without a known genetic variant</td>
<td>2226</td>
<td>Prospective</td>
<td>Biopsy-confirmed cancer for positive; at least 1 y follow-up for negative</td>
</tr>
<tr>
<td>Phi et al (2015)6</td>
<td>2010-2013</td>
<td>6</td>
<td>Women with BRCA1 or BRCA2 variants</td>
<td>2033</td>
<td>Prospective</td>
<td>Biopsy-confirmed cancer for positive; at least 1 y follow-up for negative</td>
</tr>
<tr>
<td>Warner et al (2008)4</td>
<td>1995-2008</td>
<td>11</td>
<td>Women at very high-risk of breast cancer (BRCA1 or BRCA2 or other variants or family history consistent with hereditary breast cancer)</td>
<td>4983 (41 to 1909)</td>
<td>Prospective</td>
<td>Biopsy-confirmed cancer</td>
</tr>
</tbody>
</table>

NR: not reported

Results of the systematic reviews are shown in Table 2. The reviews concluded that screening breast MRI is more sensitive but less specific than mammography for the detection of invasive cancers in high-risk women. The sensitivity of combined MRI and mammography was approximately 93% or higher in the reviews while the sensitivity of mammography alone was between approximately 40% and 55%. The Warner et al (2008) review did not present a risk of bias or quality assessment of
included studies. Phi et al (2015) assessed quality using the QUADAS-2 tool. All included studies were considered good quality.

Table 2. Results of Systematic Reviews Assessing Magnetic Resonance Imaging Screening in High-Risk Women

<table>
<thead>
<tr>
<th>Study</th>
<th>MRI (Sensitivity, %)</th>
<th>MRI (Specificity, %)</th>
<th>Mammogram (Sensitivity, %)</th>
<th>Mammogram (Specificity, %)</th>
<th>MRI Plus Mammogram (Sensitivity, %)</th>
<th>MRI Plus Mammogram (Specificity, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ding et al</td>
<td>15.4</td>
<td>NR</td>
<td>7.0</td>
<td>NR</td>
<td>16.7</td>
<td>NR</td>
</tr>
<tr>
<td>Phi et al (2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>detection rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phi et al (2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total N</td>
<td>2226</td>
<td>2226</td>
<td>2226</td>
<td>2226</td>
<td>2226</td>
<td>2226</td>
</tr>
<tr>
<td>PE (95% CI)</td>
<td>89 (76 to 96)</td>
<td>83 (77 to 88)</td>
<td>55 (41 to 69)</td>
<td>94 (90 to 96)</td>
<td>98 (86 to 100)</td>
<td>79 (73 to 84)</td>
</tr>
<tr>
<td>Warner et al</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2008)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total N</td>
<td>1951</td>
<td>1951</td>
<td>1951</td>
<td>1951</td>
<td>1951</td>
<td>1951</td>
</tr>
<tr>
<td>PE (95% CI)</td>
<td>85 (69 to 94)</td>
<td>85 (79 to 89)</td>
<td>40 (30 to 50)</td>
<td>94 (89 to 97)</td>
<td>93 (80 to 98)</td>
<td>80 (73 to 86)</td>
</tr>
</tbody>
</table>

CI: confidence interval; MRI: magnetic resonance imaging; NR: not reported; PE: pooled estimate.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

The clinical usefulness of MRI as an adjunct to mammography for screening individuals at high risk of breast cancer is supported by an indirect chain of evidence. The clinical validity of MRI for screening in high-risk women has been demonstrated in good quality studies. Breast MRI is more sensitive but less specific than mammography for detecting invasive cancers in high-risk women and the sensitivity of combined MRI and mammography is approximately 93% or higher. Given the high likelihood of malignancy among women at high-risk for breast cancer, the benefits of detecting cancer earlier with adjunctive MRI outweigh the disadvantages of incurring more unnecessary workups and biopsies due to false-positive results.

Section Summary: Screening Individuals at High-Risk of Breast Cancer
Breast MRI is more sensitive than mammography in detecting malignancy during screening. Because of the high likelihood of malignancy among women at high-risk for breast cancer, the benefits of detecting cancer earlier with adjunctive MRI outweigh the disadvantages of incurring more unnecessary workups and biopsies due to false-positive results.

Screening Individuals at Average-Risk of Breast Cancer
Clinical Context and Test Purpose
The questions addressed in this portion of the evidence review:
- Does the use of MRI as an adjunct to screening for breast cancer improve the net health outcome of patients who are asymptomatic with average-risk of developing breast cancer?
- Is this degree of increased accuracy likely to improve net health outcomes via the earlier diagnosis and treatment?

The following PICO was used to select literature to inform this review.

Populations
The relevant population of interest is patients at average-risk of developing breast cancer.
Interventions
The intervention of interest is MRI as an adjunct to screening with mammography.

Comparators
The following test is currently being used to make decisions about managing breast cancer: mammography alone.

Outcomes
The outcomes of interest for diagnostic accuracy include test accuracy and test validity (i.e., sensitivity, specificity). Primary outcomes of interest for clinical utility are overall mortality and breast cancer-specific mortality. Another outcome of interest for clinical utility is resource utilization (e.g., need for additional testing or procedures).

Breast MRI is performed as an adjunct to routine screening; timing can be guided by national guidelines on breast cancer screening (see Supplemental Information section).

Study Selection Criteria
This evidence review focuses on systematic reviews. For the evaluation of the clinical validity of MRI as an adjunct to screening with mammography, we sought systematic reviews that focused on studies meeting the following eligibility criteria:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
- Included a suitable reference standard
- Patient/sample clinical characteristics were described
- Patient/sample selection criteria were described.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Review of Evidence
Systematic Reviews
In a systematic review of literature conducted by Nelson et al (2016) for the U.S. Preventive Services Task Force breast cancer screening recommendation update, no randomized controlled trials (RCTs) or nonrandomized observational studies identified evaluated adjunctive MRI for screening average-risk women for breast cancer. Because the prevalence of breast cancer is extremely low in average-risk young women, screening with a test such as MRI that has lower specificity would result in a lower positive predictive value (PPV) and many more false-positive results. Compared with mammography, there would be greater numbers of workups and biopsies with increased anxiety and morbidity with adjunctive MRI screening applied to young, average-risk women.

Health Quality Ontario (2016) published a systematic review of MRI as an adjunct to mammography for women, not at high-risk of breast cancer. Reviewers searched for studies evaluating screening breast MRI as an adjunct to mammography compared with mammography alone. Studies needed to use pathology results as a reference standard for positive tests and clinical follow-up as a reference standard for negative tests. In addition, studies needed to report one or more outcomes of interest, which included effectiveness outcomes (e.g., mortality, health-related quality of life, screening-related harms), diagnostic outcomes (e.g., sensitivity, specificity), and biopsy and recall rates. Reviewers did not find any studies that met eligibility criteria. They concluded that there was a lack of evidence to inform the questions of the diagnostic accuracy of MRI plus mammography versus MRI alone and the impact of adjunct screening MRI on health outcomes in patients at less than high-risk of breast cancer.
Section Summary: Screening of Individuals at Average-Risk of Breast Cancer
The U.S. Preventative Services Task Force systematic review and guideline concluded that because the prevalence of breast cancer is low in average risk young women, screening with MRI, which has lower specificity, would result in a lower PPV and many more false positive results. A systematic review by Health Quality Ontario concluded that there was lack of evidence on the impact of MRI on health outcomes of individuals at less than high risk of breast cancer.

Screening When Breast Characteristics Limit the Sensitivity of Mammography
Clinical Context and Test Purpose
Screening MRI has been suggested for patients who may or may not be at increased risk but who have breast tissue characteristics that limit the sensitivity of mammographic screening (these characteristics are dense breast tissue, breast implants, or scarring after breast-conserving therapy [BCT]). Use of BCT consists of breast-conserving surgery (BCS) followed by radiotherapy.

The questions addressed in this portion of the evidence review:
- Does the use of MRI as an adjunct to screening for breast cancer improve the net health outcome of patients who are asymptomatic with breast characteristics that limit the sensitivity of mammography?
- Is this degree of increased accuracy likely to improve net health outcomes via the earlier diagnosis and treatment?

The following PICO was used to select literature to inform this review.

Populations
The population of interest is patients with breast characteristics that limit the sensitivity of mammography. For example, individuals who have dense breasts or prior BCT.

Interventions
The intervention of interest is MRI as an adjunct to screening with mammography.

Comparators
The following test is currently being used to make decisions about managing breast cancer: mammography alone.

Outcomes
The outcomes of interest for diagnostic accuracy include test accuracy and test validity (i.e., sensitivity, specificity). Primary outcomes of interest for clinical utility are overall mortality and breast cancer-specific mortality. Another outcome of interest for clinical utility is resource utilization (e.g., need for additional testing or procedures).

Breast MRI is performed as an adjunct to routine screening; timing can be guided by national guidelines on breast cancer screening (see the Supplemental Information section).

Study Selection Criteria
For the evaluation of the clinical validity of MRI as an adjunct to screening with mammography, studies that met the following eligibility criteria were considered:
- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
- Included a suitable reference standard
- Patient/sample clinical characteristics were described
- Patient/sample selection criteria were described.
Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Review of Evidence
Randomized Controlled and Single Arm Studies: Dense Breasts
One RCT and a prospective observational study were identified that evaluated the use of supplemental MRI in patients who received screening mammography and/or ultrasound. Characteristics of the studies are shown in Table 3.

Table 3. Characteristics of Clinical Validity Studies Assessing Supplemental Breast Magnetic Resonance Imaging for Routine Screening in Women

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakker et al (2019)⁹⁰⁰ ⁹</td>
<td>Women aged 50 to 75 years in the Netherlands with extremely dense breast tissue with negative results on screening mammography; socioeconomic status was recorded at baseline: 36.1% of women were in the highest status quartile (quartile 1), 23.6% in quartile 3, 22.7% in quartile 2, and 17.4% were in the lowest status quartile 4</td>
<td>Randomized controlled trial</td>
<td>Incidence of interval cancers (positive MRI result that was confirmed histologically) during 2-year screening period</td>
<td>Assessed as BI-RADS category 4 or 5 by 1 radiologist with 5+ years of experience in breast MRI; Patients with BI-RADS category of 3 received follow-up MRI after 6 months</td>
<td>NR</td>
<td>Yes (interpretation was blinded to other test results)</td>
<td>Funded by the University Medical Center Utrecht, the Netherlands Organization for Health Research and Development, the Dutch Cancer Society, the Dutch Pink Ribbon-A Sister's Hope organization, Stichting Kankerpreventie Midden-West, Bayer Pharmaceutical s, and Volpara Health Technologies</td>
</tr>
<tr>
<td>Berg et al (2012)¹¹</td>
<td>Women aged 25 years and older with heterogeneously dense or extremely dense breast tissue with at least 1 risk factor for breast cancer. Women had undergone 3 negative screenings of mammography and supplemental ultrasound. 93% of women in the study were White; the remainder of women were</td>
<td>Prospective trial</td>
<td>Most severe biopsy result within 365 days of mammographic screening and/or clinical follow-up at 1 year</td>
<td>Assessed as BI-RADS score of 3, 4, or 5</td>
<td>MRI within 8 weeks of last screening mammography</td>
<td>Yes (interpretation was blinded to other test results)</td>
<td>Funded by the Avon Foundation and National Institutes of Health grants</td>
</tr>
</tbody>
</table>
Results of the clinical validity studies are shown in Table 4. Bakker et al (2019) conducted a multicenter RCT (DENSE) with 40,373 women with extremely dense breast tissue and normal mammography results who were assigned to an optional supplemental MRI or mammography-only screening. There were 8061 patients invited to undergo MRI (MRI-invitation group); however, 4783 patients participated in supplemental MRI screening and 3278 chose not to participate. There were 32,312 patients who only received mammography (mammography-only group). The interval-cancer rate was 2.5 per 1000 screenings in the MRI-invitation group compared to 5.0 per 1000 screenings in the mammography-only group (rate difference, 2.5; 95% confidence interval [CI], 1.0 to 3.7; p<.001). Of note, among the 20 interval cancers diagnosed in the MRI-invitation group, 16 were diagnosed in patients who did not accept the supplemental MRI invitation (4.9 per 1000 screenings), while 4 were diagnosed in patients who underwent MRI screening (0.8 per 1000 screenings). In the 2012 ACRIN (American College of Radiology Imaging Network) 6666 trial, mammography alone was compared with mammography plus ultrasound in women 25 years or older with at least heterogeneously dense breast tissue and at least 1 other breast cancer risk factor. Half (54%) of women had a personal history of breast cancer. In a MRI subanalysis, women who completed 3 rounds of screening and did not have contraindications or renal impairment were asked to undergo contrast-enhanced MRI within 8 weeks of the last screening mammography. Six hundred twenty-seven women consented and were eligible for this subanalysis, and 612 (98%) completed the needed tests; 16 cancers were detected in these women. Sensitivity increased from 44% (95% CI, 20% to 70%) for mammography plus ultrasound to 100% (95% CI, 79% to 100%; p=.004) when MRI was added. Specificity declined from 84% (95% CI, 81% to 87%) for mammography plus ultrasound to 65% (95% CI, 61% to 69%; p<.001) for all 3 tests. Over the 3 year study period, another 9 cancers were identified between screening tests, and 2 additional cancers were identified off-study.

Table 4. Results of Clinical Validity Studies Assessing Supplemental Breast Magnetic Resonance Imaging for Routine Screening in Women

<table>
<thead>
<tr>
<th>Study</th>
<th>Initial N</th>
<th>Final N</th>
<th>Excluded Images</th>
<th>Cancer Rate</th>
<th>Clinical Validity, % (95% CI)</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakker et al (2019)10.</td>
<td>40,373</td>
<td>40,373 (Of 8061 who were invited to undergo MRI screening)</td>
<td>11 died, 3 moved abroad</td>
<td>Interval Cancer Rate</td>
<td>MRI invitation + mammography</td>
<td>2.5 per 1000 screenings (95% CI, 1.6 to 3.8)</td>
<td>95.2 (88.1 to 98.7)</td>
<td>92 (NR)</td>
<td>NR</td>
</tr>
<tr>
<td>Mammaryography alone</td>
<td>5.0 per 1000</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>
Table 5. Study Relevance Limitations of Clinical Validity Studies of Supplemental Breast Magnetic Resonance Imaging for Routine Screening in Women

<table>
<thead>
<tr>
<th>Study</th>
<th>Population<sup>a</sup></th>
<th>Intervention<sup>b</sup></th>
<th>Comparator<sup>c</sup></th>
<th>Outcomes<sup>d</sup></th>
<th>Duration of Follow-Up<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakker et al (2019)<sup>10,11</sup></td>
<td>4. Enrolled populations do not reflect relevant diversity</td>
<td>1. Health outcomes not reported</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

^a Population key: 1. Intended use population unclear; 2. Study population is unclear; 3. Study population not representative of intended use; 4. Enrolled populations do not reflect relevant diversity; 5. Other.

^b Intervention key: 1. Classification thresholds not defined; 2. Version used unclear; 3. Not intervention of interest.

^c Comparator key: 1. Classification thresholds not defined; 2. Not compared to credible reference standard; 3. Not compared to other tests in use for same purpose.

^d Outcomes key: 1. Study does not directly assess a key health outcome; 2. Evidence chain or decision model not explicated; 3. Key clinical validity outcomes not reported (sensitivity, specificity, and predictive values); 4. Reclassification of diagnostic or risk categories not reported; 5. Adverse events of the test not described (excluding minor discomforts and inconvenience of venipuncture or noninvasive tests).

^e Follow-Up key: 1. Follow-up duration not sufficient with respect to natural history of disease (true-positives, true-negatives, false-positives, false-negatives cannot be determined).

Table 6. Study Design and Conduct Limitations of Clinical Validity Studies of Supplemental Breast Magnetic Resonance Imaging for Routine Screening in Women

<table>
<thead>
<tr>
<th>Study</th>
<th>Selection<sup>a</sup></th>
<th>Blinding<sup>b</sup></th>
<th>Delivery of Test<sup>c</sup></th>
<th>Selective Reporting<sup>d</sup></th>
<th>Data Completeness<sup>e</sup></th>
<th>Statistical<sup>f</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakker et al (2019)<sup>10,11</sup></td>
<td>1. Not blinded to test groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berg et al (2012)<sup>11</sup></td>
<td>4. Expertise of evaluators not described.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Comparison with other tests not reported.</td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.
Observational Studies: Following Breast-Conserving Therapy

Two prospective studies have reported on the performance of surveillance breast MRI following BCT\(^{12,13}\). Study characteristics are shown in Table 7. Both studies were performed in Korea and it is unclear whether the populations overlapped.

|------------------|------------------|-------------------------------------|--------------------|-------------------------------------|----------------|------------------------|--------------------------------|
| Kim et al (2017) | Women in Korea undergoing surveillance breast MRI following BCT from 2014 to 2016 | Prospective observational | • Pathology for positive results
• Cancer not confirmed at 1-year surveillance imaging for negative results | Assessed as BI-RADS category 4 or 5 by 1 radiologist with 10+ years of experience in breast MRI | MRI within 4 wk of screening mammography and breast US | No (readers knew results of prior imaging studies) | Funded by Bayer Korea |
| Cho et al (2017) | Women aged ≤50 years in Korea undergoing surveillance breast MRI following BCT from 2010 to 2016 | Prospective observational | • Pathology for positive results
• Cancer not confirmed at 1-year surveillance imaging for negative results | Assessed as BI-RADS category 3+ by 1 radiologist with 5+ years of experience in breast MRI | MRI within 2 mo of screening mammography and breast US | Yes | Funded by Bayer Korea
Overlapping with Kim (2017) unclear |

BCT: breast-conserving therapy; BI-RADS: Breast Imaging Reporting and Data System; MRI: magnetic resonance imaging; US: ultrasound.

Results of the clinical validity studies for surveillance of breast MRI following BCT are shown in Table 8. The sensitivity of MRI was higher than mammography and ultrasound with overlapping CIs in both studies. Specificity of MRI was lower than mammography and ultrasound. The combination of mammography and MRI was 100% sensitive and 87% specific. The review by Cho et al (2017) reported that the recall rate was significantly higher for mammography plus MRI (13.8%; 95% CI, 12.0% to 15.5%) compared with mammography alone (4.4%; 95% CI, 3.3% to 5.5%), as was the biopsy rate.
(2.7% [95% CI, 2.0% to 3.4%] vs. 0.5 [95% CI, 0.2% to 0.8%]). The yield per 1000 examinations was 8.2 (95% CI, 4.3 to 12.2) for mammography plus MRI versus 4.4 (95% CI, 1.5 to 7.2) for mammography.12.

Table 8. Results of Clinical Validity Studies Assessing Surveillance Breast Magnetic Resonance Imaging After Breast-Conserving Therapy

<table>
<thead>
<tr>
<th>Study</th>
<th>Initial N</th>
<th>Final N</th>
<th>Excluded Images</th>
<th>Recurrence Rate, %</th>
<th>Clinical Validity (95% CI),%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sensitivity</td>
<td>Specificity</td>
</tr>
<tr>
<td>Kim et al (2017)</td>
<td></td>
<td></td>
<td></td>
<td>421 women (429 breast MRIs)</td>
<td>414 women (422 breast MRIs)</td>
</tr>
<tr>
<td>MRI</td>
<td>82 (48 to 98)</td>
<td>95 (92 to 97)</td>
<td>31 (15 to 51)</td>
<td>99 (98 to 100)</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>18 (2 to 52)</td>
<td>98 (96 to 99)</td>
<td>20 (3 to 56)</td>
<td>98 (96 to 99)</td>
<td></td>
</tr>
<tr>
<td>Mammography</td>
<td>18 (2 to 52)</td>
<td>99 (98 to 100)</td>
<td>40 (5 to 85)</td>
<td>98 (96 to 99)</td>
<td></td>
</tr>
<tr>
<td>Cho et al (2017)</td>
<td></td>
<td></td>
<td></td>
<td>801</td>
<td>754</td>
</tr>
<tr>
<td>MRI</td>
<td>88 (66 to 97)</td>
<td>90 (88 to 91)</td>
<td>24 (14 to 37)</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>65 (41 to 83)</td>
<td>90 (89 to 92)</td>
<td>35 (19 to 55)</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Mammography</td>
<td>53 (31 to 74)</td>
<td>96 (95 to 97)</td>
<td>73 (43 to 90)</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Mammography plus MRI</td>
<td>100 (82 to 100)</td>
<td>87 (85 to 89)</td>
<td>29 (18 to 42)</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

CI: confidence interval; MRI: magnetic resonance imaging; NPV: negative predictive value; NR: not reported; PPV: positive predictive value; US: ultrasound.

Tables 9 and 10 display notable limitations identified in each study.

Table 9. Study Relevance Limitations of Clinical Validity Studies of Surveillance Breast Magnetic Resonance Imaging After Breast-Conserving Therapy

<table>
<thead>
<tr>
<th>Study</th>
<th>Population(^a)</th>
<th>Intervention(^b)</th>
<th>Comparator(^c)</th>
<th>Outcomes(^d)</th>
<th>Duration of Follow-Up(^e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim et al (2017)</td>
<td></td>
<td></td>
<td></td>
<td>1. Health outcomes not reported</td>
<td></td>
</tr>
<tr>
<td>Cho et al (2017)</td>
<td></td>
<td></td>
<td></td>
<td>1. Health outcomes not reported</td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.
\(^a\) Population key: 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.
\(^b\) Intervention key: 1. Classification thresholds not defined; 2. Version used unclear; 3. Not intervention of interest.
\(^c\) Comparator key: 1. Classification thresholds not defined; 2. Not compared to credible reference standard; 3.
Not compared to other tests in use for same purpose.

Outcomes key: 1. Study does not directly assess a key health outcome; 2. Evidence chain or decision model not explicated; 3. Key clinical validity outcomes not reported (sensitivity, specificity, and predictive values); 4. Reclassification of diagnostic or risk categories not reported; 5. Adverse events of the test not described (excluding minor discomforts and inconvenience of venipuncture or noninvasive tests).

Follow-Up key: 1. Follow-up duration not sufficient with respect to natural history of disease (true-positives, true-negatives, false-positives, false-negatives cannot be determined).

Table 10. Study Design and Conduct Limitations of Clinical Validity Studies of Surveillance Breast Magnetic Resonance Imaging After Breast-Conserving Therapy

<table>
<thead>
<tr>
<th>Study</th>
<th>Selection a</th>
<th>Blinding b</th>
<th>Delivery of Test c</th>
<th>Selective Reporting d</th>
<th>Data Completeness e</th>
<th>Statistical f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim et al (2017)</td>
<td>1. Not blinded to results of mammography, US, or PET/CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cho et al (2017)</td>
<td>1. Not blinded to results of mammography, US, or PET/CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CT: computed tomography; PET: positron emission tomography; US: ultrasound.

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

Selection key: 1. Selection not described; 2. Selection not random or consecutive (i.e., convenience).

Blinding key: 1. Not blinded to results of reference or other comparator tests.

Delivery of Test key: 1. Timing of delivery of index or reference test not described; 2. Timing of index and comparator tests not same; 3. Procedure for interpreting tests not described; 4. Expertise of evaluators not described.

Data Completeness key: 1. Inadequate description of indeterminate and missing samples; 2. High number of samples excluded; 3. High loss to follow-up or missing data.

Statistical key: 1. Confidence intervals and/or p values not reported; 2. Comparison with other tests not reported.

Section Summary: Screening When Breast Characteristics Limit the Sensitivity of Mammography

The RCT from the Netherlands (Bakker 2019) found that among women with dense breasts, the use of MRI increased the cancer detection rate and decreased the interval cancer rate compared to mammography. However, the false positive rate was 79.8 per 1000 screenings. The trial is continuing in order to assess the effects over time of adjunctive screening with MRI. The prospective cohort trial by the American College of Radiology Imaging Network (ACRIN 6666; Berg 2012) found that the addition of MRI resulted in high cancer detection, but with increased false positive findings. The evidence is insufficient to show that the use of adjunctive MRI to screen average risk individuals who have dense breasts improves the net health outcome.

Two studies assessed the addition of MRI to mammography for surveillance of women who had been treated for cancer with BCT. The sensitivity of adjunct MRI was greater than mammography alone, but with overlapping confidence intervals. The companion study of women under 50 years showed higher cancer detection rates with adjunct MRI but lower specificity than mammography alone; the authors suggested that adjunctive mammography improves detection of early stage but biologically aggressive cancer in the population of younger women. However, to the extent that younger women may constitute a higher risk population, the delineation of MRI for screening high risk individuals is addressed in high risk screening section of this policy. The evidence is insufficient to demonstrate that adjunctive MRI for screening improves the net health outcome when breast characteristics limit the sensitivity of mammography.
Detection Uses
Detecting Suspected Occult Breast Primary Tumor With Axillary Nodal Adenocarcinoma With a Negative Mammography and Physical Exam

Clinical Context and Test Purpose
Breast MRI has been advocated to help detect suspected occult primary breast cancer in patients with adenocarcinoma in the axillary lymph nodes after mammography and physical exam have failed to reveal a breast tumor. Localization of a primary breast tumor might permit BCT instead of presumptive mastectomy.

The questions addressed in this portion of the evidence review:
• Does the use of MRI as an adjunct to detect breast cancer eligible for BCT improve the net health outcome compared to standard techniques in individuals with suspected occult breast primary tumor with axillary nodal adenocarcinoma and negative mammography?
• Is this degree of increased accuracy likely to improve net health outcomes via the earlier diagnosis, better patient management decisions, and more appropriate treatment?

The following PICO was used to select literature to inform this review.

Populations
The population of interest is individuals with suspected occult breast primary tumor with axillary nodal adenocarcinoma and negative mammography.

Interventions
The intervention of interest is MRI examination as an adjunct to detect breast cancer eligible for BCT.

Comparators
The comparator of interest is a preemptive mastectomy.

Outcomes
The outcomes of interest for diagnostic accuracy include test accuracy and test validity (i.e., sensitivity, specificity). Primary outcomes of interest for clinical utility are the avoidance of invasive procedures (e.g., biopsy, mastectomy), the ability to detect cancer that would require additional or earlier treatment, and overall mortality and breast cancer-specific mortality rates.

Breast MRI is performed after a positive breast cancer screening or diagnostic examination.

Study Selection Criteria
For the evaluation of the clinical validity of MRI as an adjunct to detect breast cancer eligible for BCT, studies that met the following eligibility criteria were considered:
• Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
• Included a suitable reference standard
• Patient/sample clinical characteristics were described
• Patient/sample selection criteria were described.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).
Review of Evidence
Systematic Reviews
De Besser et al (2010) evaluated 8 retrospective studies in a systematic review of studies on the use of MRI in patients (N=220) with mammographically occult breast cancer and an axillary metastasis. In 7 studies, a potential primary lesion was detected in a mean of 72% of cases (range, 36% to 86%). Pooling individual patient data yielded a sensitivity of 90% (range, 85% to 100%) in detecting an actual malignant tumor. Specificity, however, was 31% (range, 22% to 50%).

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs.

Evidence on detection of suspected occult breast cancer is based on a Technology Evaluation Center (TEC) Assessment (2004) and a subsequent meta-analysis, which appear to be the only direct evidence available for this indication. The Assessment concluded that, in this small subgroup of patients, adjunctive use of breast MRI allowed a substantial portion of patients (25% to 61%) to avoid the morbidity of mastectomy; risk of the unnecessary biopsy was estimated to be 8%.

Section Summary: Detecting Suspected Occult Breast Primary Tumor With Axillary Nodal Adenocarcinoma With a Negative Mammography and Physical Exam
The use of MRI to guide BCS rather than presumptive mastectomy appears to offer the substantial benefit of breast conservation for those patients in whom MRI detects the primary tumor.

Detecting Contralateral Breast Cancer After Established Breast Cancer
Clinical Context and Test Purpose
Patients with a diagnosed breast cancer are at higher risk for a synchronous or subsequent breast cancer in the contralateral breast, and breast MRI has been suggested as a more sensitive screening test compared to mammography.

The questions addressed in this portion of the evidence review:
- Does the use of MRI as an adjunct to detect breast cancer in the contralateral breast improve the net health outcome compared to standard techniques in individuals with suspected occult breast primary tumor with axillary nodal adenocarcinoma and negative mammography?
- Is this degree of increased accuracy likely to improve net health outcomes via the earlier diagnosis, better patient management decisions, and more appropriate treatment?

The following PICO was used to select literature to inform this review.

Populations
The population of interest is individuals with breast cancer.

Interventions
The intervention of interest is MRI examination as an adjunct to detect breast cancer in the contralateral breast.
Comparators
The comparator of interest is mammography and clinical assessment alone.

Outcomes
The outcomes of interest for diagnostic accuracy include test accuracy and test validity (i.e., sensitivity, specificity). Primary outcomes of interest for clinical utility are the avoidance of invasive procedures (e.g., biopsy, mastectomy), the ability to detect cancer that would require additional or earlier treatment, and overall mortality and breast cancer-specific mortality rates.

Breast MRI is performed after a positive breast cancer screening or diagnostic examination.

Study Selection Criteria
For the evaluation of the clinical validity of MRI examination as an adjunct to detect breast cancer in the contralateral breast, studies that met the following eligibility criteria were considered:

• Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
• Included a suitable reference standard
• Patient/sample clinical characteristics were described
• Patient/sample selection criteria were described.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Review of Evidence
Single Arm Studies
Lehman et al (2007) reported on the results of the ACRIN-A6667 trial. They found that 30 (3%) of 969 women with a recent diagnosis of unilateral breast cancer had contralateral cancer at the time of initial diagnosis using MRI. Contralateral lesions were not detected by mammography or physical exam. Eighteen (60%) of the 30 cancers were invasive and 12 (40%) were ductal carcinoma in situ (DCIS). In this study, 121 (12.5%) patients had biopsies, with a positive biopsy rate of 24.8%. With 1-year follow-up, the sensitivity of MRI was 91% and specificity was 88%. Results of this trial in a diverse group of patients were similar to the findings of others.

Liberman et al (2003) reported on 212 women who had negative mammograms of the asymptomatic contralateral breast and found 12 cancers (prevalence, 5%) on MRI, including 6 DCIS and 6 infiltrating carcinomas. However, the PPV of these findings was only 20%, with a specificity of 76%. Lehman et al (2005) found 4 contralateral cancers in 103 patients; in this study, 10 biopsies were done.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs.

No RCTs assessing diagnostic breast MRI in individuals with suspected contralateral breast cancer after established breast cancer were identified.

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

A trial with nearly 1000 women found that MRI had high sensitivity and reasonably high specificity for identifying contralateral lesions not detected by mammography or physical examination. Although long-term outcomes of contralateral breast cancers are not fully known, important management changes will occur based on such findings, and these management changes should lead to improved outcomes.

Section Summary: Detecting Contralateral Breast Cancer After Established Breast Cancer

The available evidence suggests that adjunctive MRI can identify contralateral breast cancers in women with negative mammograms. A trial with nearly 1000 women found that MRI had high sensitivity and reasonably high specificity for identifying contralateral lesions not detected by mammography or physical examination. Although long-term outcomes of contralateral breast cancers are not fully known, important changes in management will occur as a result of the findings, and these management changes should lead to improved outcomes. That is, in addition to the presumed benefits of early detection, simultaneous treatment of synchronous cancers can occur rather than multiple treatments on separate occasions.

Detecting Breast Cancer in the Case of Low-Suspicion Findings on Conventional Mammography

Clinical Context and Test Purpose

Patients with abnormal findings on mammography are categorized according to the level of suspicion of the findings. Patients with low-suspicion findings are often recommended to undergo short-interval follow-up after 3 to 6 months (instead of immediate biopsy). This follow-up may continue for 2 years to demonstrate the stability of benign findings or to detect progression; progression would indicate the need for biopsy. Breast MRI has been investigated as a more sensitive technique to further characterize low-suspicion breast lesions, so that patients with MRI-negative lesions may be reassured and avoid prolonged follow-up and those with MRI-positive lesions may be referred for early biopsy, possibly leading to earlier diagnosis and treatment.

The question addressed in this portion of the evidence review is: In patients with a diagnosis of low-suspicion findings on conventional testing not indicated for immediate biopsy, are net health outcomes improved by the use of MRI as an adjunct compared to standard care with short-interval mammographic follow-up to detect breast cancer?

The following PICO was used to select literature to inform this review.

Populations

The population of interest is individuals with low-suspicion findings on conventional mammography.

Interventions

The intervention of interest is MRI examination as an adjunct to standard care with short-interval mammographic follow-up.

Comparators

The comparator of interest is standard care and short-interval mammographic follow-up.

Outcomes

The outcomes of interest for diagnostic accuracy include test accuracy and test validity (i.e., sensitivity, specificity). Primary outcomes of interest for clinical utility are the avoidance of invasive procedures (e.g., biopsy, mastectomy), the ability to detect cancer that would require additional or earlier treatment, and overall mortality and breast cancer-specific mortality rates.

Breast MRI is performed after a positive breast cancer screening or diagnostic examination.
Study Selection Criteria
For the evaluation of the clinical validity of MRI examination as an adjunct to standard care with short-interval mammographic follow-up, studies that met the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
- Included a suitable reference standard
- Patient/sample clinical characteristics were described
- Patient/sample selection criteria were described

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

See the Clinically Useful section for discussion.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Review of Evidence
Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs. Currently, there is a lack of direct evidence supporting use.

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

Because the clinical validity of adjunctive MRI has not been established, a chain of evidence supporting the clinical utility of this modality cannot be constructed.

Section Summary: Detecting Breast Cancer in the Case of Low-Suspicion Findings on Mammography
Currently, there is a lack of direct evidence supporting use for this indication. Well-designed prospective confirmatory studies would be necessary to permit conclusions about the effect of this adjunctive use of breast MRI on health outcomes.

Detecting Breast Cancer by Further Characterizing Suspicious Breast Lesions
Clinical Context and Test Purpose
Breast lesions detected by clinical exam or mammography that are considered suspicious are frequently referred for biopsy; however, only a minority of such biopsies reveal breast cancer due to the relatively low specificity of clinical and radiologic exams. Breast MRI has been investigated as a technique to further characterize suspicious breast lesions so that patients with benign lesions may be spared a biopsy procedure. One infrequent situation (niche use) in which MRI of the breast may be helpful and improve health outcomes is in the management of patients who have a suspicious lesion that can only be seen on one mammographic view (i.e., the lesion cannot be seen in other views or on an ultrasound). Patients who fall under this category have a lesion that is not palpable, and therefore, percutaneous biopsy localization cannot be performed. Instead, MRI would be used to localize the
suspicious lesion and permit biopsy (this technique would presumably lead to earlier diagnosis of breast cancer as opposed to waiting until the lesion was visible on 2 mammographic views or on ultrasound). The previously described scenario is an infrequent occurrence, so the evidence base addressing this use is mainly anecdotal, but the clinical rationale supporting this use is good.

The question addressed in this portion of the evidence review is: Does MRI as an adjunct to further characterize breast lesions lead to better net health outcomes than biopsy based on mammography and clinical assessment?

The following PICO was used to select literature to inform this review.

Populations
The population of interest is individuals with suspicious breast lesions.

Interventions
The intervention of interest is MRI examination as an adjunct to mammography and clinical assessment.

Comparators
The comparator of interest is biopsy based on mammography and clinical assessment.

Outcomes
The outcomes of interest for diagnostic accuracy include test accuracy and test validity (i.e., sensitivity, specificity). Primary outcomes of interest for clinical utility are the avoidance of invasive procedures (e.g., biopsy, mastectomy), the ability to detect cancer that would require additional or earlier treatment, and overall mortality and breast cancer-specific mortality rates.

Use of MRI is performed after a positive breast cancer screening or diagnostic examination.

Study Selection Criteria
For the evaluation of the clinical validity of MRI examination as an adjunct to mammography and clinical assessment, studies that met the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
- Included a suitable reference standard
- Patient/sample clinical characteristics were described
- Patient/sample selection criteria were described.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Review of Evidence
Systematic Reviews
A systematic review published by Medeiros et al (2011) analyzed 69 studies including 9298 women.19, Pooled sensitivity was 90% (95% CI, 88% to 92%), and pooled specificity was 75% (95% CI, 70% to 79%). The pooled positive likelihood ratio of an abnormal MRI for malignancy was 3.6 (95% CI, 3.0 to 4.2) and the pooled negative likelihood ratio was 0.12 (95% CI, 0.09 to 0.15). For breast cancer or high-risk lesions versus benign lesions, the area under the curve for MRI was 0.91.

A systematic review published by Zhang et al (2022) included 29 studies with 2976 patients and 3365 suspicious breast lesions.20, The sensitivity and specificity of MRI features in differentiating malignant from benign breast lesions ranged from 73.8% to 91.9% and from 33.9% to 85.4%, respectively. The enrolled studies showed high heterogeneity. For differentiating malignant from benign breast...
lesions, the area under the curve values of MRI features; irregular shape, noncircumscribed margin, mass enhancement, heterogeneous internal enhancement, and type II or III time intensity curve patterns were 0.79, 0.87, 0.63, 0.82, and 0.89, respectively.

Single Arm Studies

Two single-institution, prospective cohort studies examined the diagnostic accuracy of breast MRI for lesions identified by mammography or ultrasound. Strobel et al (2015) in Germany included lesions characterized as Breast Imaging Reporting and Data System (BI-RADS) category 4 by conventional workup in 340 women. Most women were postmenopausal (61%), had no previous breast biopsy (64%), or family history of breast cancer (62%), and underwent initial evaluation for routine screening (88%). Of 353 lesions, 135 (38%) were biopsied; lesions down-graded to BI-RADS categories 1, 2, or 3 on MRI were followed with imaging for 18 months, except for pure clustered microcalcifications (without accompanying mass), which were biopsied or followed with imaging for 24 months at patient discretion; none of the lesions monitored progressed during follow-up. The overall incidence of malignancy including DCIS was 20% (n=69). The MRI down-graded 256 (28%) of 353 lesions, confirmed 37 (11%) lesions, and upgraded 50 (14%) lesions. The PPV of MRI was 73% compared with 19% for conventional imaging. The negative predictive value (NPV) of MRI was 99% (and could not be calculated for conventional imaging). For pure clustered microcalcifications, sensitivity was 89% (25/28 lesions) and the false-negative rate was 12% (3/28 lesions). False-positive MRI findings resulted in a biopsy for 5 (1.5%) of 340 women.

In a similar study, Li et al (2014) in China included 84 women with BI-RADS categories 3, 4, or 5 microcalcifications on mammography. Most patients were premenopausal (81%), had no family history of breast cancer (83%), and underwent initial evaluation for routine screening (56%). All lesions were biopsied surgically (n=91). The incidence of malignancy including DCIS was 46%. The PPV of MRI was 87% compared with 60% for mammography. The NPV of the MRI was 91%.

de Oliveira Pereira et al (2020) performed a cross-sectional study in Brazil of 32 women with suspected breast tumor based on findings from mammography, ultrasonography, or MRI. The mean age of patients was 54.6 years, and the mean breast lump size was 1.6 cm. The sensitivity, specificity, PPV, and NPV were 100%, 50%, 66.7%, and 100%, respectively, for MRI; 56.2%, 87.5%, 81.8%, and 66.7% for mammography; and 75%, 18.8%, 48%, and 42.8% for ultrasonography.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Review of Evidence

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs.

No RCTs assessing diagnostic breast MRI in individuals to further characterize suspicious breast lesions were identified.

Chain of Evidence

Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

Available evidence has not shown this use of breast MRI would improve health outcomes. Considering the relative ease of breast biopsy, the sensitivity of breast MRI would have to be virtually 100% to confidently avoid biopsy. Although MRI performs well, it is clear that the sensitivity is not
100%. False-negative results tend to occur, particularly in certain subcategories, such as DCIS, but invasive carcinomas may not be detected on MRI, also leading to false-negative results. The potential harm to health outcomes of failing to diagnose breast cancer or at least of delaying the diagnosis of breast cancer is of significant concern.

Section Summary: Detecting Breast Cancer by Further Characterizing Suspicious Breast Lesions
Use of MRI for evaluation of suspicious breast lesions has relatively high sensitivity and a moderately high specificity. However, it has not yet been established whether the NPV is sufficient to preclude the need for biopsy. Although 3 more recent studies have reported NPVs greater than 90% in certain types of breast lesions, these studies were conducted in single, non-U.S. institutions that require replication in larger, multicenter trials. Therefore, the use of MRI to further characterize suspicious lesions is currently unlikely to alter clinical management. In addition, the fairly high rate of false-positives will lead to substantial numbers of unnecessary biopsies.

Treatment-Related Uses
Treatment-related uses addressed here are surgical planning, evaluating tumor response to neoadjuvant therapy, and evaluating residual tumor after BCT. Preoperative planning includes identification of multicentric disease in clinically localized breast cancer; surgical decisions after neoadjuvant chemotherapy; evaluation of suspected chest wall involvement; and localizing lesions prior to biopsy.

For each of these indications, study selection prioritized systematic reviews focusing on the relevant patient population and purpose. Systematic reviews were supplemented by studies of clinical validity. For the evaluation of clinical validity of MRI examination for the proposed purpose, studies that met the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
- Included a suitable reference standard
- Patient/sample clinical characteristics were described
- Patient/sample selection criteria were described.

In addition, we sought studies of clinical usefulness. These are studies that report the outcomes of using MRI for the proposed purpose, with preference for RCTs.

Objective: Surgical Planning
The question addressed in this portion of the evidence review is whether the use of MRI evaluation as an adjunct to guide treatment planning (e.g., surgical approach) for patients with known or suspected breast cancer improves the net health outcome compared with standard techniques.

The sections on surgical planning address 4 specific indications (1) identification of multicentric disease in clinically localized breast cancer; (2) surgical decisions after neoadjuvant chemotherapy; (3) evaluation of suspected chest wall involvement; and (4) localizing lesions prior to biopsy.

Preoperative Mapping to Identify Multicentric Disease With Clinically Localized Breast Cancer Clinical Context and Test Purpose
Patients with clinically localized breast cancer are considered candidates for BCS followed by radiotherapy. However, mastectomy may be considered in patients with multicentric disease (in a separate quadrant of the breast). Breast MRI has been investigated as a technique to assess the extent of the tumor in the breast, specifically to detect multicentric disease as an aid to surgical planning.

The question addressed in this evidence review is: Does the use of MRI for preoperative mapping to identify multicentric disease improve net health outcomes?
The following PICO was used to select literature to inform this review.

Populations
The populations of interest is individuals with clinically localized breast cancer.

Interventions
The intervention of interest is MRI as an adjunct to standard evaluation methods.

Comparators
The following tests and practices are currently being used to make decisions about managing breast cancer: standard workup without MRI.

Outcomes
Relevant outcomes of interest for diagnostic accuracy include test accuracy and test validity (i.e., sensitivity, specificity). Primary outcomes of interest for clinical utility include avoidance of invasive procedures (e.g., biopsy, mastectomy), the ability to detect cancer requiring additional or earlier treatment, and overall mortality and breast cancer-specific mortality rates.

Breast MRI is performed after identification of suspicious breast lesions, or before or after treatment for breast cancer.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Consistent with a 'best available evidence approach,' within each category of study design, studies with larger sample sizes and longer duration were preferred.
- Studies with duplicative or overlapping populations were excluded.

Review of Evidence

Systematic Reviews
Several meta-analyses have evaluated evidence on additional disease detected by MRI and changes in clinical management, most of which were by the same research group.²⁴,²⁵,²⁶,²⁷,²⁸,²⁹

Li et al (2022) conducted a systematic review of 19 studies (4 RCTs, 15 observational) that evaluated the efficacy of preoperative MRI in patients with invasive breast cancer.²⁹ All breast cancer types were included but patients had to be undergoing curative surgery (e.g., excision or BCS). All studies included a control group. The primary outcome, mastectomy rate, was significantly increased with preoperative MRI (odds ratio [OR], 1.36; 95% CI, 1.13 to 1.64; p=.001; I²=91%) based on data from 16 studies (n=86,075). Preoperative MRI significantly reduced the rate of reoperation (OR, 0.77; 95% CI, 0.62 to 0.97; p=.02; I²=71%). Other outcomes, including primary BCS, secondary mastectomy, and the rate of positive margins, were not significantly different between groups. An analysis of 3 studies in patients with invasive lobular carcinoma found similar results for all outcomes among patients who did and did not receive preoperative MRI.

The most recent meta-analysis published by Houssami et al was in 2017.²⁶ Studies included in the review were comparative (randomized or nonrandomized), evaluated preoperative MRI versus an alternative approach that did not include MRI, and reported quantitative data on surgical outcomes. The primary endpoint for the meta-analysis was whether patients underwent mastectomy as
surgical treatment. Secondary endpoints were re-excision rates after BCS, positive margins after BCS, and receipt of contralateral prophylactic mastectomy. Nineteen studies met the inclusion criteria-3 RCTs and 16 nonrandomized comparative studies. For the primary study endpoint, a pooled analysis of 15 studies (N=85,975) found significantly greater odds of receiving a mastectomy after preoperative MRI than after no MRI (OR, 1.39; 95% CI, 1.23 to 1.57; p<.001). Findings were the same in analyses stratified by publication dates, suggesting that the higher mastectomy rates were not limited to older studies conducted when the MRI-guided biopsy was less common. In an analysis limited to patients with invasive lobular cancer, there was no significant difference in the odds of mastectomy (6 studies: pooled OR; 1.00; 95% CI, 0.75 to 1.33; p=.988) or the odds of re-excision (5 studies: OR, 0.65; 95% CI, 0.35 to 1.24; p=.192). Among the secondary outcomes, a pooled analysis of 3 studies found a significantly higher odds of contralateral prophylactic mastectomy after MRI (OR, 1.91; 95% CI, 1.25 to 2.91). There were no significant differences between groups on other secondary outcomes (i.e., re-excision rates, positive margins, reoperation rates).

One meta-analysis has addressed breast cancer recurrence rates. This meta-analysis, by Houssami et al (2014), analyzed individual patient data from 4 studies-1 RCT and 3 nonrandomized comparative studies (N=3180).28 Most patients (62% to 93%) had localized, invasive disease and received BCT and systemic chemotherapy. After a median follow-up of 2.9 years (interquartile range [IQR], 1.6 to 4.5 years), there was no difference in estimated 8-year ipsilateral local (adjusted hazard ratio [HR], 0.88; 95% CI, 0.52 to 1.51; p=.65) or distant (adjusted HR, 1.18; 95% CI, 0.76 to 2.27; p=.48) recurrence-free survival overall or in patients who received BCT only.

Randomized Controlled Trials
Since the publication of the Houssami et al (2017) meta-analysis, Bruck et al (2018) reported on the results of an RCT to evaluate the diagnostic value of preoperative MRI in 100 patients with newly diagnosed unifocal stage I invasive ductal carcinoma.30 Patients were randomized in a 1:1 ratio to preoperative breast MRI or surgery without MRI. Breast MRI detected an additional finding in 14 patients (28%) and MRI detected lesions in 7 (14%) patients, that were confirmed to be malignant. Seven (14%) patients underwent breast reoperation in the MRI group compared with 12 (24%) patients in the control group (p=.20). Definitive mastectomy was performed in 6 (12%) patients in the MRI group compared with 2 (4%) in the control group (p=.14).

Mota et al (2023) conducted a single-center, open-label RCT (BREAST-MRI) in patients with breast cancer undergoing breast conserving surgery.31 Two hundred fifty seven patients received preoperative MRI and 267 patients served as controls. Local relapse-free survival (p=.8), overall survival (p=.7), and reoperation rates (p=.85) were similar between groups; however, 21 patients underwent mastectomy in the MRI group compared to 1 patient in the control group.

A discussion of the 3 RCTs included in the Houssami et al (2017) meta-analysis (described above) is as follows.

The RCT by Gonzalez et al (2014) in Sweden assessed 440 women who underwent surgical treatment of invasive breast cancer with or without presurgical breast MRI.32 Breast MRI provided incremental information that altered the treatment plan in 40 (18%) of 220 patients in the MRI group. Conversion from planned BCS to mastectomy occurred more often in the MRI group (20%) than in the control group (10%; p=.024). However, more patients in the MRI group had planned BCS at baseline (70%) than in the control group (60%; p=.036). The ipsilateral reoperation rate was 5% in the MRI group versus 15% in the control group (p<.001). Reoperation rates among those initially planned for BCS were 5% and 22%, respectively (p<.001).

A second RCT, the preoperative MRI and surgical management in patients with nonpalpable breast cancer trial, was reported by Peters et al (2011).33 It randomized 463 patients with suspicious, nonpalpable breast lesions identified by mammography or ultrasound to prebiopsy MRI or usual care. Of 207 evaluable patients in the MRI group, 11 additional suspicious lesions were identified on
MRI and were occult on other imaging studies. All 11 additional lesions underwent biopsy, with 2 (18%) positive for malignancy. The incidence of mastectomy was similar between groups (32% vs. 34%; p=.776), as was the incidence of BCS (68% vs. 66%). The incidence of re-excisions due to positive tumor margins was significantly greater in the MRI group (34%) than in the control group (12%; p=.008).

A multicenter RCT from the U.K., Comparative effectiveness of MRI in breast cancer trial, reported by Turnbull et al (2010), examined the impact of presurgical MRI on the need for additional treatment within 6 months.34 This study was an open, parallel-group trial conducted at 45 centers in the U.K. and enrolled 1623 women with biopsy-proven breast cancer who were scheduled for wide local excision BCT. Of 816 patients in the MRI group, 58 (7%) underwent mastectomy as a result of MRI findings and/or patient choice, compared with 10 (1%) patients in the no-MRI group who underwent mastectomy by patient choice. There was no statistically significant reduction in reoperation rates in those who received MRI scans (19% in both groups; OR, 0.96; 95% CI, 0.75 to 1.24; p=.77). In the MRI group, 19 (2%) patients had a “pathologically avoidable” mastectomy, defined as a mastectomy based on MRI results showing more extensive disease but histopathology showing only localized disease. Twelve months after surgery, there was no statistically significant difference in the quality of life between groups.

Observational Studies
In addition to the RCTs, Onega et al (2018) reported on the association between preoperative MRI and all-cause mortality in 5 registries (N=4454) of the National Cancer Institute-sponsored Breast Cancer Surveillance Consortium.35 Data from the Breast Cancer Surveillance Consortium registries were linked to Medicare claims data or electronic health records; women ages 66 years and older with initial nonmetastatic breast cancer (stage I to III) diagnosed from 2005 to 2010 were included with follow-up continuing through 2014. Nine hundred seventeen (21%) women underwent preoperative MRI. The unadjusted 5-year cumulative probability of death was 0.12 for women with MRI and 0.17 for those without (HR, 0.67; 95% CI, 0.54 to 0.82). However, after adjustment for age, sociodemographic, and clinical factors, the association was attenuated (HR, 0.90; 95% CI, 0.72 to 1.12).

Fortune-Greeley et al (2014) retrospectively examined case records of 20,332 women with invasive breast cancer in the Surveillance Epidemiology and End Results-Medicare-linked dataset.36 Twelve percent of patients had a preoperative MRI. Among patients with invasive lobular carcinoma, but no other histologic types, preoperative breast MRI was associated with lower odds of reoperation after initial partial mastectomy (adjusted OR, 0.59; 95% CI, 0.40 to 0.86).

Zeng et al (2020) performed a retrospective analysis of 512 women age ≤50 years undergoing BCT.37 Preoperative MRI was performed in 64.5% of women. In patients who did versus did not receive preoperative MRI, mean age was 43.4 and 43.6 years, and tumor size was 1.64 and 1.80 cm, respectively. In those who received MRI versus no MRI, local recurrence occurred in 7.9% versus 8.2% of patients, respectively (adjusted HR with MRI vs. no MRI, 1.03; 95% CI, 0.53 to 1.99), and was associated with distant recurrence in 6.4% versus 6.6% of patients (adjusted HR with MRI vs. no MRI, 0.89; 95% CI, 0.43 to 1.84).

Section Summary: Preoperative Mapping to Identify Multicentric Disease With Clinically Localized Breast Cancer
Preoperative MRI as an adjunct to mammography and clinical assessment identifies additional foci of ipsilateral breast cancer and results in a higher rate of mastectomy. For example, a 2017 meta-analysis of 17 studies found significantly higher odds of receiving a mastectomy after preoperative MRI versus no MRI in women with breast cancer. Follow-up studies have reported mixed results, including no significant reduction in reoperation rates after MRI while other studies have reported lower odds of reoperation in patients with invasive lobular carcinoma. No significant differences in ipsilateral local or distant recurrence-free survival after MRI-guided treatment were found in meta-analyses. While there is limited evidence that use of MRI to identify multicentric disease improves
recurrence free survival or reduces operations in the overall population, benefit might accrue to sub populations, particularly high risk individuals.

Guiding Surgical Decisions After Neoadjuvant Chemotherapy

Clinical Context and Test Purpose

Patients with locally advanced breast cancer are usually offered neoadjuvant chemotherapy to reduce tumor size and permit BCT. Evaluation of tumor size and extent using conventional techniques (i.e., mammography, clinical examination, ultrasonography) is suboptimal, and breast MRI has been proposed as a means to more accurately determine tumor size for surgical planning. Breast MRI before chemotherapy is used to document tumor location so that the tumor can be optimally evaluated after chemotherapy, especially if the size and degree of contrast enhancement are greatly reduced. Tumors that respond to chemotherapy get smaller and may even disappear; however, the actual reduction in size is a delayed finding, and earlier changes in tumor vascularity have been observed in chemotherapy-responsive tumors. A decline in contrast enhancement on MRI has been noted in tumors relatively early in the course of chemotherapy. This MRI finding as an early predictor of tumor response has been explored as a means to optimize the choice of the chemotherapeutic agent (e.g., to alter chemotherapy regimen if the tumor appears unresponsive).

The question addressed in this evidence review is: Does the use of MRI for guiding surgical decisions after neoadjuvant chemotherapy in patients with locally advanced breast cancer improve net health outcomes?

The following PICO was used to select literature to inform this review.

Populations
The population of interest is individuals with locally advanced breast cancer undergoing neoadjuvant chemotherapy.

Interventions
The intervention of interest is MRI to guide surgical decisions after neoadjuvant chemotherapy.

Comparators
The following tests and practices are currently being used to make decisions about managing breast cancer: mammography and clinical assessment.

Outcomes

Relevant outcomes of interest for diagnostic accuracy include test accuracy and test validity (i.e., sensitivity, specificity). Primary outcomes of interest for clinical utility include avoidance of invasive procedures (e.g., biopsy, mastectomy), the ability to detect cancer requiring additional or earlier treatment, and overall mortality and breast cancer-specific mortality rates.

Breast MRI is performed after identification of suspicious breast lesions, or before or after treatment for breast cancer.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Consistent with a 'best available evidence approach,' within each category of study design, studies with larger sample sizes and longer duration were preferred.
• Studies with duplicative or overlapping populations were excluded.

Review of Evidence

Systematic Reviews

Compared with conventional methods of evaluating tumor size and extent (i.e., mammography, clinical exam, ultrasound), MRI of the breast provides an estimation of tumor size and extent that is at least as good as or better than that based on alternatives. Drew et al (2001) found MRI to be 100% sensitive and specific for defining residual tumor after chemotherapy. Conversely, mammography achieved 90% sensitivity and 57% specificity (mammography results considered equivocal), and the clinical exam was only 50% sensitive and 86% specific. Similarly, Partridge et al (2002) reported on correlations of residual tumor size by histopathology of 0.89 with MRI and 0.60 with a clinical exam. The MRI results were well-correlated with results of the histopathologic assessment (criterion standard) with correlation coefficients ranging from 0.72 to 0.98; however, MRI is not intended as a replacement for histopathologic assessment.

Marinovich et al (2015) published an individual patient data meta-analysis of agreement between MRI and pathologic tumor size and other evaluation methods after neoadjuvant chemotherapy. To be eligible for inclusion, studies had to evaluate at least 15 patients undergoing neoadjuvant chemotherapy who were evaluated with MRI and at least 1 other test (i.e., mammography, ultrasound, clinical examination) after surgery. Studies also had to report residual tumor size (i.e., longest diameter). Twenty-four studies met inclusion criteria, and individual patient data were available for 8 of these studies (N=300). The pooled mean difference (MD) in size estimates between MRI and pathology (8 studies, n=243) was 0.0 cm (95% CI, -0.1 to 0.2 cm). In 4 studies comparing size estimates of mammography and pathology, the MD was 0.0 cm, but the 95% CI was wider (-0.3 to 0.4 cm). In 5 studies (n=123) reporting on the MD between ultrasound and pathology, the pooled estimate was -0.3 cm (95% CI, -0.6 to 0.1 cm). The largest size variance was for studies (3 studies, n=107) comparing clinical examination with pathology (pooled MD, -0.8 cm; 95% CI, -1.5 to -0.1 cm).

Previously, Lobbes et al (2013) reported on a systematic review of 35 studies (N=2359) reporting on the ability of MRI to predict tumor size after neoadjuvant chemotherapy. Literature was searched to July 2012. Median correlation coefficient was 0.70 (range, 0.21 to 0.98). Variation in size between MRI and pathology ranged from -1.4 to +2.0 cm.

Section Summary: Guiding Surgical Decisions After Neoadjuvant Chemotherapy

Studies, including a 2015 meta-analysis, have found that MRI results are well-correlated with pathologic assessment for measuring residual tumor size after neoadjuvant chemotherapy and that MRI performed better than conventional methods. Using breast MRI instead of conventional methods to guide surgical decisions regarding BCT versus mastectomy after neoadjuvant chemotherapy would be at least as beneficial and might lead more frequently to appropriate surgical treatment.

Evaluating Suspected Chest Wall Involvement

Clinical Context and Test Purpose

Tumors located near the chest wall may invade the pectoralis major muscle or extend deeper into chest wall tissues. Typically, modified radical mastectomy removes only the fascia of the pectoralis muscle; however, tumor involvement of the muscle would also necessitate the removal of the muscle (or a portion of it). In smaller tumors, it is necessary to determine how closely the tumor abuts the pectoralis muscle and whether it invades the muscle to determine whether there is an adequate margin of normal breast tissue to permit BCT. Breast MRI has been suggested as a means of determining pectoralis muscle/chest wall involvement for surgical planning and to assist in the decision whether to use neoadjuvant chemotherapy.

The question addressed in this evidence review is: Does the use of MRI to diagnose chest wall involvement of posteriorly located breast tumors improve net health outcomes?
The following PICO was used to select literature to inform this review.

Populations
The population of interest is individuals with posteriorly located breast tumors.

Interventions
The intervention of interest is MRI to diagnose chest wall involvement.

Comparators
The following tests and practices are currently being used to make decisions about managing breast cancer: mammography.

Outcomes
Relevant outcomes of interest for diagnostic accuracy include test accuracy and test validity (i.e., sensitivity, specificity). Primary outcomes of interest for clinical utility include avoidance of invasive procedures (e.g., biopsy, mastectomy), the ability to detect cancer requiring additional or earlier treatment, and overall mortality and breast cancer-specific mortality rates.

Breast MRI is performed after identification of suspicious breast lesions, or before or after treatment for breast cancer.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Consistent with a ‘best available evidence approach,’ within each category of study design, studies with larger sample sizes and longer durations were sought.
- Studies with duplicative or overlapping populations were excluded.

Review of Evidence

Observational Studies
Morris et al (2000) prospectively studied 19 patients with posteriorly located breast tumors suspected to involve the pectoralis major muscle based on either mammography or clinical exam.42, Thirteen tumors were thought to be fixed to the chest wall on clinical exam, and 12 appeared to have pectoral muscle involvement on mammography. The MRI results were compared with surgical and pathologic findings. The presence of abnormal enhancement within the pectoralis major muscle on MRI was 100% sensitive and 100% specific for identifying 5 tumors that actually involved the pectoralis major muscle.

Two other retrospective studies have reported on 4 cases in which MRI was able to determine the involvement of the chest wall with 100% accuracy.43,44,

Section Summary: Evaluating Suspected Chest Wall Involvement
Evidence on MRI for evaluating suspected chest wall involvement with posteriorly located tumors is based on prospective and retrospective observational studies. All studies found that MRI was able to detect chest wall involvement with 100% accuracy. Given the high level of diagnostic accuracy for MRI compared with criterion standard and conventional alternative techniques, the evidence is considered sufficient to conclude that breast MRI improves net health outcome.
Evaluating and Localizing Lesions Prior to Biopsy

Clinical Context and Test Purpose
The question addressed in this evidence review is: Does the use of MRI to evaluate and localize breast lesions prior to biopsy improve net health outcomes?

The following PICO(s) were used to select literature to inform this review.

Populations
The populations of interest is individuals with a suspicious breast lesion recommended for biopsy but not localizable by mammography or ultrasonography.

Interventions
The intervention of interest is MRI to evaluate and localize breast lesion prior to biopsy.

Comparators
The following tests and practices are currently being used to make decisions about managing breast cancer: waiting until lesion becomes palpable or visible on mammography or ultrasonography.

Outcomes
Relevant outcomes of interest for diagnostic accuracy include test accuracy and test validity (i.e., sensitivity, specificity). Primary outcomes of interest for clinical utility include avoidance of invasive procedures (e.g., biopsy, mastectomy), the ability to detect cancer requiring additional or earlier treatment, and overall mortality and breast cancer-specific mortality rates.

Breast MRI is performed after identification of suspicious breast lesions recommended for biopsy.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Consistent with a ‘best available evidence approach,’ within each category of study design, studies with larger sample sizes and longer duration were preferred.
- Studies with duplicative or overlapping populations were excluded.

Review of Evidence

Observational Studies
Use of MRI to evaluate lesions prior to biopsy is infrequent. An MRI is used in this situation to permit biopsy and breast cancer diagnosis sooner than waiting until the lesion is visible on 2 mammographic views or on ultrasound or becomes palpable. The evidence base addressing this use is mainly anecdotal.

Xie et al (2023) retrospectively evaluated the value of breast MRI to downgrade suspicious lesions (BI-RADS 4A or 4B) found on ultrasound in 167 patients with 186 lesions.\(^4\)\(^5\) Compared to pathology and imaging findings over the subsequent 12 months, MRI had 100% sensitivity, 92.6% specificity, 87.8% PPV, and 100% NPV. Four additional suspicious lesions were detected by MRI, of which 3 (75%) were malignant. Survival was not mentioned. The authors concluded that MRI could allow suspicious lesions to be downgraded and prevent unneeded biopsies.
De Lima Docema et al (2014) used contrast-enhanced MRI to locate occult tumors in 25 patients selected from a group who had undergone breast MRI for suspicious incidental MRI findings at a single-institution in Brazil. Sentinel lymph node mapping and tumor resection were done simultaneously. Malignant tumors were confirmed in 15 (60%) patients, including 4 patients with DCIS. Survival outcomes were not reported.

Section Summary: Evaluating and Localizing Lesions Prior to Biopsy
A small cohort study in Brazil identified malignant tumors in 60% of patients with MRI-detected occult lesions using contrast-enhanced MRI. A retrospective study of patients with suspicious lesions on ultrasound reported high sensitivity, specificity, PPV, and NPV of MRI to downgrade lesion status and prevent biopsies.

Evaluating Response to Neoadjuvant Chemotherapy With Locally Advanced Breast Cancer Clinical Context and Test Purpose
The question addressed in this evidence review is: Does the use of MRI to evaluate response to chemotherapy for locally advanced breast cancer improve net health outcomes?

The following PICO was used to select literature to inform this review.

Populations
The population of interest is individuals with locally advanced breast cancer undergoing neoadjuvant chemotherapy.

Interventions
The intervention of interest is MRI to evaluate the response to chemotherapy.

Comparators
The comparator of interest is clinical assessment alone.

Outcomes
Relevant outcomes of interest for diagnostic accuracy include test accuracy and test validity (i.e., sensitivity, specificity). Primary outcomes of interest for clinical utility include avoidance of invasive procedures (e.g., biopsy, mastectomy), the ability to detect cancer requiring additional or earlier treatment, and overall mortality and breast cancer-specific mortality rates.

Breast MRI is performed after a period of undergoing adjuvant chemotherapy.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Consistent with a ‘best available evidence approach,’ within each category of study design, studies with larger sample sizes and longer duration were preferred.
- Studies with duplicative or overlapping populations were excluded.

Review of Evidence

Systematic Reviews
Four systematic reviews of MRI to evaluate response to neoadjuvant chemotherapy have been published. Characteristics of the reviews are shown in Table 11 and described briefly in the
following paragraphs. Li et al (2018) compared the performance of MRI with positron emission
tomography (PET) plus computed tomography (CT).48.

Table 11. Characteristics of Systematic Reviews Assessing Magnetic Resonance Imaging to
Evaluate Response to Neoadjuvant Chemotherapy

<table>
<thead>
<tr>
<th>Study</th>
<th>Dates Studies</th>
<th>Participants</th>
<th>N (Range)</th>
<th>Design</th>
<th>Reference Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janssen et al (2022)49</td>
<td>2000 to 2019</td>
<td>Patients with early-stage breast cancer who received MRI after NAC</td>
<td>4497 (NR)</td>
<td>Observational (prospective, retrospective)</td>
<td>Pathologic response</td>
</tr>
<tr>
<td>Li et al (2018)48</td>
<td>Up to 2017</td>
<td>Had both PET/CT and MRI after preoperative NAC with at least 10 patients</td>
<td>MRI: 575 (16 to 142), PET/CT: 618 (16 to 142)</td>
<td>Observational (prospective, retrospective)</td>
<td>Postoperative pathologic result (pCR vs. non-pCR)</td>
</tr>
<tr>
<td>Marinovich et al (2013)47</td>
<td>Up to 2011</td>
<td>Newly diagnosed breast cancer undergoing NAC, with MRI undertaken after NAC</td>
<td>2949 (14 to 869)</td>
<td>Observational (prospective, retrospective)</td>
<td>Pathologic response based on surgical excision preferred; other references standards allowed</td>
</tr>
<tr>
<td>Lobbes et al (2013)41</td>
<td>Up to 2012</td>
<td>Newly diagnosed breast cancer for whom breast MRI was not performed at baseline or prior to surgery but after completion of NAC with at least 25 patients</td>
<td>560 (31 to 195)</td>
<td>Observational (prospective, retrospective)</td>
<td>NR</td>
</tr>
</tbody>
</table>

CT: computed tomography; MRI: magnetic resonance imaging; NAC: neoadjuvant chemotherapy; NR: not reported; pCR: pathologic complete response; PET: positron emission tomography.

Results of the systematic reviews are shown in Table 12. Janssen et al (2022) reported the results of a systematic review that evaluated the accuracy of MRI for detecting pCR after neoadjuvant chemotherapy.49 Risk of bias was assessed using the QUADAS-2 tool. Sensitivity was highest for hormone receptor (HR)-negative/HER2-negative cancer (0.67), followed by HR-negative/HER2-positive (0.65), HR-positive/HER2-positive (0.60), and HR-positive/HER2-negative (0.55). None of the differences in sensitivity were significant between groups. Specificity results were 0.85, 0.81, 0.74, and 0.88, respectively. Specificity was significantly different between the HR-negative/HER2-positive and R-positive/HER2-negative groups (p=.046).

Li et al (2018) reported on a systematic review comparing MRI with PET/CT to evaluate pathologic response to neoadjuvant chemotherapy and included studies in which patients underwent both PET/CT and MRI after preoperative neoadjuvant chemotherapy; postoperative pathologic complete response (pCR vs. non-pCR) was used as the reference standard; and the study included at least 10 patients.48 Methodologic quality was assessed using QUADAS-2. Most domains were rated as low-risk of bias in all studies; however, only 2 studies enrolled consecutive or random samples and in only 3 studies were the reference standard results interpreted without knowledge of the results of the index tests. There was a high level of heterogeneity in the pooled estimate of both sensitivity (88%; 95% CI, 78 to 94; I²=83%) and specificity (69%; 95% CI, 51 to 83; I²=72%) for MRI.

Marinovich et al (2013) conducted a systematic review with meta-analysis.47 Forty-four studies (N=2949) assessing the ability of MRI to discriminate residual breast tumor after neoadjuvant chemotherapy from pCR were identified. Studies were heterogeneous in MRI parameters used, thresholds for identifying a response, and definitions of pathologic response. Median MRI sensitivity,
defined as the proportion of patients with residual tumor correctly classified by MRI, and specificity, defined as the proportion of patients with pCR classified by MRI as the absence of residual tumor was 0.92 (IQR, 0.85 to 0.97) and 0.60 (IQR, 0.39 to 0.96), respectively. Specificity increased when a relative threshold for defining negative MRI (i.e., contrast enhancement was less than or equal to normal breast tissue) was used rather than an absolute threshold (complete absence of MRI enhancement) with little decrement to sensitivity. The pooled area under the receiver operating characteristic curve was 0.88, and the diagnostic OR was 17.9 (95% CI, 11.5 to 28.0). A diagnostic OR of 1 indicates no discriminatory ability; higher values indicate better test performance. Accuracy decreased when residual DCIS was included in the definition of pCR. Statistical measures of between-study heterogeneity were not reported. A subset of studies compared MRI with other imaging modalities (mammography, ultrasound) and clinical exam; however, 95% CIs for pooled analyses were very large, rendering conclusions uncertain.

In the systematic review by Lobbes et al (2013), 8 studies reported on measures of diagnostic accuracy. Median sensitivity, defined as the proportion of patients with pCR correctly classified by MRI, was 42% (range, 25% to 92%). Median specificity, defined as the proportion of patients without pCR correctly classified by MRI, was 89% (range, 50% to 97%). Median (range) PPV and NPV were 64% (50% to 73%) and 87% (71% to 96%), respectively.

<table>
<thead>
<tr>
<th>Study</th>
<th>MRI</th>
<th>Mammmography</th>
<th>PET/CT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitivity, %</td>
<td>Specificity, %</td>
<td></td>
</tr>
<tr>
<td>Janssen et al</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2022)49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR/HER2- (n=1646), PE (95% CI)</td>
<td>0.67 (0.58 to 0.74)</td>
<td>0.85 (0.81 to 0.88)</td>
<td>NR</td>
</tr>
<tr>
<td>HR+/HER2+ (n=1013), PE (95% CI)</td>
<td>0.65 (0.56 to 0.73)</td>
<td>0.81 (0.74 to 0.86)</td>
<td>NR</td>
</tr>
<tr>
<td>HR+/HER2- (n=2273), PE (95% CI)</td>
<td>0.55 (0.45 to 0.64)</td>
<td>0.88 (0.84 to 0.91)</td>
<td>NR</td>
</tr>
<tr>
<td>HR+/HER2+ (n=1144), PE (95% CI)</td>
<td>0.60 (0.50 to 0.70)</td>
<td>0.74 (0.63 to 0.83)</td>
<td>NR</td>
</tr>
<tr>
<td>Li et al (2018)48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total N</td>
<td>575</td>
<td>575</td>
<td>618</td>
</tr>
<tr>
<td>PE (95% CI)</td>
<td>88 (78 to 94)</td>
<td>69 (51 to 83)</td>
<td>77 (58 to 90)</td>
</tr>
<tr>
<td>Marinovich et al (2013)47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total N</td>
<td>2949</td>
<td></td>
<td>2949</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>92 (85 to 97)</td>
<td>60 (39 to 96)</td>
<td>NR</td>
</tr>
<tr>
<td>Lobbes et al (2013)46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total N</td>
<td>560</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>42 (25 to 92)</td>
<td>89 (50 to 97)</td>
<td>NR</td>
</tr>
</tbody>
</table>

Table 12. Results of Systematic Reviews Assessing Magnetic Resonance Imaging to Evaluate Response to Neoadjuvant Chemotherapy

CI: confidence interval; CT: computed tomography; HR: hormone receptor; IQR: interquartile range; MRI: magnetic resonance imaging; NR: not reported; PE: pooled estimate; PET: positron emission tomography.

Trials
The ACRIN 6657/I-SPY trial (2012) enrolled 206 women aged 26 to 68 years with invasive breast cancer 3 cm or larger who were receiving anthracycline-based neoadjuvant chemotherapy, with or without a taxane.50 Of the patients included in the study, 74.4% were White, 19.2% were Black, 4% were Asian, and 2.4% were more than one race or unknown race; 4.2% of patients were Hispanic or Latino. The MRI was performed at 4 time points: before chemotherapy, after 1 cycle of chemotherapy, between the anthracycline-based regimen and the taxane, and after all...
chemotherapy but before surgery. Various MRI parameters were evaluated for their ability to predict the pathologic outcome. Results were reported as the difference in the predictive ability for residual cancer burden, a composite pathologic index, between MRI parameters and clinical size predictors at the same time points. The MRI findings were a stronger predictor of pathologic outcomes than clinical assessment, with the largest difference being tumor volume after the first chemotherapy cycle and a difference in the area under the receiver operating characteristic curve of 0.09; the corresponding area under the receiver operating characteristic curve values after the third and fourth MRIs were 0.07 and 0.05. Similar findings were reported for predicting pCR.

Section Summary: Evaluating Response to Neoadjuvant Chemotherapy With Locally Advanced Breast Cancer
Studies, including systematic reviews, have not found sufficient evidence to determine whether breast MRI can reliably predict lack of response to neoadjuvant chemotherapy. There is a large amount of variability in reported performance characteristics of MRI in published studies, leaving uncertain the true accuracy of MRI for this purpose. Furthermore, evidence would need to show that any resulting change in patient management (e.g., discontinuation of chemotherapy or change to a different regimen) would improve outcomes.

Evaluating Residual Tumor After Lumpectomy or Breast Conservation Surgery
Clinical Context and Test Purpose
In BCT there is complete removal of the primary tumor along with a rim of normal surrounding tissue. Pathologic assessment of surgical margins is performed on excisional specimens to determine whether the tumor extends to the margins of resection. Surgical specimens are oriented and marked to direct re-excision if margins are shown to contain tumor; however, when the tumor is not grossly visible, the extent of a residual tumor within the breast can only be determined through repeat excision and pathologic assessment. Use of MRI has been proposed to evaluate the presence and extent of the residual tumor as a guide to re-excision when surgical margins are positive for tumor.

The question addressed in this evidence review is: Does the use of MRI to evaluate residual tumor after lumpectomy or BCT improve net health outcomes?

The following PICO was used to select literature to inform this review.

Populations
The population of interest are individuals with positive surgical margins after lumpectomy or BCT.

Interventions
The intervention of interest is MRI to evaluate the residual tumor.

Comparators
The comparator of interest is pathologic inspection.

Outcomes
Relevant outcomes of interest for diagnostic accuracy include test accuracy and test validity (i.e., sensitivity, specificity). Primary outcomes of interest for clinical utility include avoidance of invasive procedures (e.g., biopsy, mastectomy), the ability to detect cancer requiring additional or earlier treatment, and overall mortality and breast cancer-specific mortality rates.

Breast MRI is performed after lumpectomy or BCT.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
• In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
• To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
• Consistent with a ‘best available evidence approach,’ within each category of study design, studies with larger sample sizes and longer duration were preferred.
• Studies with duplicative or overlapping populations were excluded.

Review of Evidence
Observational Studies
Evidence on evaluating residual tumor includes several observational studies, most of which are retrospective. Histopathologic examination on re-excision was used as the criterion standard. Three studies were conducted at the same institution and accrued patients during similar time periods, so overlap reporting may exist. Most of the studies were published before 2005 and are not discussed further. Characteristics of studies published since 2015 are shown in Table 13 and described briefly in the following paragraphs.

Table 13. Characteristics of Clinical Validity Studies Assessing Magnetic Resonance Imaging to Evaluate Residual Tumor After Surgery

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Population</th>
<th>Design</th>
<th>Reference Standard</th>
<th>Threshold for Positive Index Test</th>
<th>Timing of Reference and Index Tests</th>
<th>Blinding of Assessors</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee et al (2018)57</td>
<td>Patients in Taiwan with LCIS who had initial excision from 2011 to 2015; race or ethnicity were not described</td>
<td>Unclear</td>
<td>Histopathology</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Few details on study design or conduct provided</td>
</tr>
<tr>
<td>Kramme et al (2017)56</td>
<td>Women with positive margins after initial surgery for breast cancer from 2004 to 2013; race or ethnicity were not described</td>
<td>Retrospective</td>
<td>Histopathology</td>
<td>NR</td>
<td>Radiologists had access to other imaging results, when available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCIS: lobular carcinoma in situ; NR: not reported.

Results of the clinical validity studies published after 2015 are shown in Table 14. Lee et al (2018) reported on the results of a study comparing breast MRI with ultrasonography for detecting remnant lobular carcinoma in situ lesions after initial excision. Twenty-nine patients with lobular carcinoma in situ were enrolled between 2011 and 2015. Methods are poorly described. Residual lesions were identified by pathology in 12 (41%) cases. The sensitivity of ultrasonography was 58% compared with 83% for breast MRI; precision estimates were not reported. Specificity was 100% for both modalities.
Krammer et al (2017) published a retrospective study evaluating breast MRI to assess residual disease in 175 patients who had been candidates for BCS and had positive surgical margins. The MRIs were read independently by 2 radiologists, both of whom had access to the pathology report from the initial surgery and any prior breast imaging. Pathology findings served as the criterion standard. For reader 1, the sensitivity and specificity of detecting residual disease was 63% and 75%, respectively. For reader 2, sensitivity and specificity were 83% and 64%, respectively. The inter-observer agreement was moderate (k=0.56).

Table 14. Results of Clinical Validity Studies Assessing Magnetic Resonance Imaging to Evaluate Residual Tumor After Surgery

<table>
<thead>
<tr>
<th>Study</th>
<th>Initial N</th>
<th>Final N</th>
<th>Excluded Samples</th>
<th>Prevalence of Condition, %</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee et al (2018)57</td>
<td>NR</td>
<td>29</td>
<td>Any invasive focus or other malignancy</td>
<td>41</td>
<td>83% (NR)</td>
<td>100% (NR)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>MRI</td>
<td></td>
<td></td>
<td></td>
<td>83% (NR)</td>
<td>100% (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultrasonography</td>
<td></td>
<td></td>
<td></td>
<td>58% (NR)</td>
<td>100% (NR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krammer et al (2017)56</td>
<td>180</td>
<td>175</td>
<td>Received chemotherapy prior to postoperative MRI (n=4), poor MRI image quality (n=1)</td>
<td>79</td>
<td>73% (NR)</td>
<td>72% (NR)</td>
<td>91% (NR)</td>
<td>45% (NR)</td>
</tr>
<tr>
<td>MRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73% (NR)</td>
<td>72% (NR)</td>
<td>91% (NR)</td>
<td>45% (NR)</td>
</tr>
</tbody>
</table>

MRI: magnetic resonance imaging; NPV: negative predictive value; NR: not reported; PPV: positive predictive value.

Tables 15 and 16 display notable limitations identified in each study.

Table 15. Study Relevance Limitations of Clinical Validity Studies of Magnetic Resonance Imaging to Evaluate Residual Tumor After Surgery

<table>
<thead>
<tr>
<th>Study</th>
<th>Populationa</th>
<th>Interventionb</th>
<th>Comparatorc</th>
<th>Outcomesd</th>
<th>Duration of Follow-Upa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee et al (2018)57</td>
<td>2. Study population is unclear</td>
<td>1,2. No description provided</td>
<td>1. No description provided</td>
<td>1. Health outcomes not reported</td>
<td></td>
</tr>
<tr>
<td>Krammer et al (2017)56</td>
<td>2. Study population is unclear</td>
<td>3. No comparator</td>
<td>1. Health outcomes not reported</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

a Population key: 1. Intended use population unclear; 2. Study population is unclear; 3. Study population not representative of intended use; 4. Enrolled populations do not reflect relevant diversity; 5. Other.
b Intervention key: 1. Classification thresholds not defined; 2. Version used unclear; 3. Not intervention of interest.
c Comparator key: 1. Classification thresholds not defined; 2. Not compared to credible reference standard; 3. Not compared to other tests in use for same purpose.
d Outcomes key: 1. Study does not directly assess a key health outcome; 2. Evidence chain or decision model not explicated; 3. Key clinical validity outcomes not reported (sensitivity, specificity and predictive values); 4. Reclassification of diagnostic or risk categories not reported; 5. Adverse events of the test not described (excluding minor discomforts and inconvenience of venipuncture or noninvasive tests).

a Follow-Up key: 1. Follow-up duration not sufficient with respect to natural history of disease (true-positives, true-negatives, false-positives, false-negatives cannot be determined).
Table 16. Study Design and Conduct Limitations of Clinical Validity Studies Assessing Magnetic Resonance Imaging to Evaluate Residual Tumor After Surgery

<table>
<thead>
<tr>
<th>Study</th>
<th>Selection</th>
<th>Blinding</th>
<th>Delivery of Test</th>
<th>Selective Reporting</th>
<th>Data Completeness</th>
<th>Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee et al (2018)57.</td>
<td>1. Not described</td>
<td>1,3,4. Not described</td>
<td></td>
<td></td>
<td></td>
<td>1. No precision estimates provided 2. No statistical comparison to other methods</td>
</tr>
<tr>
<td>Krammer et al (2017)56.</td>
<td>1. Not blinded to other imaging results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

a Selection key: 1. Selection not described; 2. Selection not random or consecutive (i.e., convenience).
b Blinding key: 1. Not blinded to results of reference or other comparator tests.
c Test Delivery key: 1. Timing of delivery of index or reference test not described; 2. Timing of index and comparator tests not same; 3. Procedure for interpreting tests not described; 4. Expertise of evaluators not described.
e Data Completeness key: 1. Inadequate description of indeterminate and missing samples; 2. High number of samples excluded; 3. High loss to follow-up or missing data.
f Statistical key: 1. Confidence intervals and/or p values not reported; 2. Comparison with other tests not reported.

Section Summary: Evaluating Residual Tumor After Lumpectomy or Breast Conservation Surgery

The available evidence is not sufficient to permit conclusions whether the use of MRI identifies the presence and/or extent of residual disease after lumpectomy or BCS and before re-excision. Most studies were retrospective, and most reported moderate sensitivity and specificity of MRI for detection of residual disease. One study published after 2015 reported the sensitivity and specificity of MRI to be over 70%. The other study published after 2015 reported a sensitivity of 83% and a specificity of 100% but offered very few details on methods, so study quality cannot be assessed.

Supplemental Information

The purpose of the following information is to provide reference material. Inclusion does not imply endorsement or alignment with the evidence review conclusions.

Practice Guidelines and Position Statements

Guidelines or position statements will be considered for inclusion in ‘Supplemental Information’ if they were issued by, or jointly by, a US professional society, an international society with US representation, or National Institute for Health and Care Excellence (NICE). Priority will be given to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.

National Comprehensive Cancer Network

Current National Comprehensive Cancer Network (NCCN) guidelines on breast cancer (v. 4.2023),60, breast cancer screening and diagnosis (v. 1.2023),61 and genetic assessment of those at high-risk of breast, ovarian, and pancreatic cancer (v. 3.2023)62 list the following indications for breast magnetic resonance imaging (MRI).

Screening (as an adjunct to mammography).61

*Recommend Annual MRI Screening
 • For individuals with a genetic mutation, or an untested first-degree relative of gene mutation carrier
• For individuals who received thoracic RT [radiation therapy] between the ages of 10 and 30 years
• For individuals with a residual lifetime risk ≥20% as defined by models that are largely dependent on family history; based on the extent of family history, consider referral for genetic testing.
• Consider annual MRI screening for individuals with ADH [atypical ductal hyperplasia] or lobular neoplasia (LCIS [lobular carcinoma in situ]/ALH [atypical lobular hyperplasia]) and ≥20% lifetime risk

Insufficient Evidence to Recommend for or Against Routine Population-Based MRI Screening:
• Residual lifetime risk 15%-20%, as defined by models that are largely dependent on family history
• Heterogeneously or extremely dense breast on mammography

Recommend Against MRI Screening (Based on Expert Consensus Opinion):
• Individuals at <15% residual lifetime risk"

The NCCN guidelines for breast cancer screening and diagnosis also state that individuals assigned female at birth at "increased risk" of breast cancer include the following groups:61,
• those with a prior history of breast cancer;
• those ≥ 35 years of age with a 5-year risk of invasive breast carcinoma ≥1.7% (per the Modified Gail Model);
• those who have a lifetime risk >20% based on history of LCIS or ADH/ALH;
• those who have a lifetime risk >20% as defined by models that are largely dependent on family history;
• those who received prior thoracic irradiation between the ages of 10 and 30 years
• those with a pedigree suggestive of or with a known genetic predisposition"

The NCCN guidelines for genetic or familial high-risk assessment for breast cancer recommend MRI screening with contrast for patients with BRCA pathogenic or likely pathogenic variants starting at age 25 to 29 years or individualized if the family had breast cancer diagnosis before age 30. The guidelines further state that MRI with contrast can be considered for patients with the following genetic variants:62,
• ATM, BARD1, and CHEK2 starting at age 30 to 35 years
• CDH1, STK11, and PALB2, starting at age 30 years
• NF1, from ages 30 to 50 years
• TP53 pathogenic/likely pathogenic variant who are treated for breast cancer and have not had a bilateral mastectomy, starting at age 20 to 29 years
• RAD51C and RAD51D, starting at age 40 years
• PTEN pathogenic/likely pathogenic variant who are treated for breast cancer and have not had a bilateral mastectomy, starting at age 30 to 35 years or 5 to 10 years before the earliest breast cancer in the family

The NCCN guidelines for genetic or familial high-risk assessment for breast cancer also state there is insufficient evidence for any recommendations for use of breast MRI for patients with the following genetic variants: BRIP1, MLH1, MSH2, MSH6, PMS2, EPCAM, FANCC, MRE11A, MUTYH heterozygotes, RECQL, RAD50, RINT1, SLX4, SMARCA4, or XRCC2.

Guidelines on breast cancer screening and diagnosis make the following recommendations on diagnosis.61,
• Optional MRI for women with nipple discharge, no palpable mass, and a Breast Imaging Reporting and Data System (BI-RADS) rating of 1 to 3.
For patients with skin changes consistent with serious breast disease, consideration of breast MRI is included in the guidelines for those with benign biopsy of skin or nipple following BI-RADS category 1 to 3 assessment. Since a benign skin punch biopsy in a patient with clinical suspicion of inflammatory breast cancer (IBC) does not rule out malignancy, further evaluation is recommended...[and] MRI may be used for suspicious nipple discharge when mammography and ultrasound are not diagnostic.

Guidelines on breast cancer make the following recommendations on pretreatment evaluation with breast MRI:
- "May be useful in identifying otherwise clinically occult disease in patients presenting with axillary nodal metastases (cT0, cN+), with Paget disease, or with invasive lobular carcinoma poorly (or inadequately) defined on mammography, ultrasound, or physical examination."
- "May be used for staging evaluation to define extent of cancer or presence of multifocal or multicentric cancer in the ipsilateral breast, or as screening of the contralateral breast cancer at time of initial diagnosis."

Guidelines on breast cancer make the following recommendations related to MRI surrounding treatment:
- "May be helpful for breast cancer evaluation before and after preoperative systemic therapy to define extent of disease, response to treatment, and potential for breast-conservation therapy."
- "False-positive findings on breast MRI are common. Surgical decisions should not be based solely on the MRI findings. Additional tissue sampling of areas of concern identified by breast MRI is recommended."

Guidelines on breast cancer make the following recommendations on MRI related to surveillance:
- "The utility of MRI in follow-up screening of patients with prior breast cancer is undefined. It should generally be considered for: patients with dense breasts treated with breast-conserving surgery and radiation therapy, those diagnosed before the age of 50, and those whose lifetime risk of a second primary breast cancer is >20% based on models largely dependent on family history, such as in those with the risk associated with inherited susceptibility to breast cancer."

American Cancer Society
The American Cancer Society recommendations for the early detection of breast cancer, most recently updated in 2022, has recommended the following on MRI:

"Women who are high risk for breast cancer based on certain factors should get a breast MRI and a mammogram every year, typically starting at age 30. This includes women who:
- Have a lifetime risk of breast cancer of about 20% to 25% or greater, according to risk assessment tools that are based mainly on family history
- Have a known *BRCA1* or *BRCA2* gene mutation (based on having had genetic testing)
- Have a first-degree relative (parent, brother, sister, or child) with a BRCA1 or BRCA2 gene mutation, and have not had genetic testing themselves
- Had radiation therapy to the chest when they were between the ages of 10 and 30 years
- Have Li-Fraumeni syndrome, Cowden syndrome, or Bannayan-Riley-Ruvalcaba syndrome, or have first-degree relatives with one of these syndromes

The American Cancer Society recommends against MRI screening for women whose lifetime risk of breast cancer is less than 15%.

There’s not enough evidence to make a recommendation for or against yearly MRI screening for women who have a higher lifetime risk based on certain factors, such as:
• Having a personal history of breast cancer, ductal carcinoma in situ (DCIS), lobular carcinoma in situ (LCIS), atypical ductal hyperplasia (ADH), or atypical lobular hyperplasia (ALH)
• Having ‘extremely’ or ‘heterogeneously’ dense breasts as seen on a mammogram

If MRI is used, it should be in addition to, not instead of, a screening mammogram. This is because although an MRI is more likely to find cancer than a mammogram, it may still miss some cancers that a mammogram would find.

Most women at high risk should begin screening with MRI and mammograms when they are 30 and continue for as long as they are in good health. But this is a decision that should be made with a woman’s health care providers, taking into account her personal circumstances and preferences.”

American College of Radiology
The American College of Radiology has appropriateness criteria for breast cancer screening, which were developed in 2012 and revised in 2017; palpable breast masses, revised in 2022; initial workup and surveillance for stage I breast cancer, reviewed in 2019; monitoring response to neoadjuvant therapy, revised 2022; transgender breast cancer screening, 2021; and supplemental breast cancer screening based on breast density, 2021 (see Table 17).

Table 17. Magnetic Resonance Imaging-Related Criteria for Breast Cancer Screening, Diagnosis, and Monitoring Response

<table>
<thead>
<tr>
<th>Specific Indications</th>
<th>MRI Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-risk women: women with a BRCA gene variant and their untested first-degree relatives, women with a history of chest irradiation between the ages of 10 and 30 years, women with 20% or greater lifetime risk of breast cancer</td>
<td>Usually appropriate with and without contrast (with mammography)</td>
</tr>
<tr>
<td>Intermediate-risk women: women with personal history of breast cancer, lobular neoplasia, atypical ductal hyperplasia, or 15% to 20% lifetime risk of breast cancer</td>
<td>May be appropriate with and without contrast (with mammography)</td>
</tr>
<tr>
<td>Average-risk women: women with <15% lifetime risk of breast cancer, breasts not dense</td>
<td>Usually not appropriate with and without contrast</td>
</tr>
<tr>
<td>Evaluating palpable breast mass. All indications reviewed</td>
<td>Usually not appropriate with and without contrast</td>
</tr>
<tr>
<td>Known breast cancer. Initial determination of tumor size and extent within the breast prior to neoadjuvant chemotherapy.</td>
<td>Usually appropriate without and with contrast</td>
</tr>
<tr>
<td>Known breast cancer. Imaging of the breast after initiation or completion of neoadjuvant chemotherapy.</td>
<td>Usually appropriate without and with contrast</td>
</tr>
<tr>
<td>Known breast cancer, clinically node-negative. Axillary evaluation prior to neoadjuvant chemotherapy.</td>
<td>Usually not appropriate</td>
</tr>
<tr>
<td>Known breast cancer, clinically node-positive. Axillary evaluation prior to neoadjuvant chemotherapy.</td>
<td>May be appropriate without and with contrast</td>
</tr>
<tr>
<td>Known breast cancer, clinically node-negative. Axillary evaluation after completion of neoadjuvant chemotherapy, axilla not previously evaluated.</td>
<td>Usually not appropriate</td>
</tr>
<tr>
<td>Known breast cancer, clinical suspicion of metastatic disease. Staging or assessment of response to neoadjuvant chemotherapy.</td>
<td>Usually not appropriate</td>
</tr>
<tr>
<td>Known axillary lymph node-positive breast cancer on prior mammography, ultrasound, or MRI. Axillary evaluation after completion of neoadjuvant chemotherapy, axilla previously evaluated.</td>
<td>Usually not appropriate</td>
</tr>
<tr>
<td>Known breast cancer. Axillary imaging suspicious for metastatic disease on mammography, ultrasound, or MRI during initial evaluation.</td>
<td>Usually not appropriate</td>
</tr>
<tr>
<td>Surveillance. Rule out local recurrence.</td>
<td>May be appropriate without and with contrast</td>
</tr>
<tr>
<td>Transfeminine (male-to-female) patient, 40 years of age or older with past or current hormone use ≥5 years; average risk patient.</td>
<td>Usually not appropriate with and with contrast</td>
</tr>
</tbody>
</table>
Specific Indications

<table>
<thead>
<tr>
<th>Specific Indications</th>
<th>MRI Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfeminine (male-to-female) patient, 25 to 30 years of age or older with past or current hormone use ≥5 years; higher-than-average risk.</td>
<td>Usually not appropriate without and with contrast</td>
</tr>
<tr>
<td>Transfeminine (male-to-female) patient with no hormone use (or hormone use ≤5 years) at any age; average-risk patient</td>
<td>Usually not appropriate without and with contrast</td>
</tr>
<tr>
<td>Transfeminine (male-to-female) patient, 25 to 30 years of age or older with no hormone use (or hormone use ≤5 years); higher-than-average risk.</td>
<td>Usually not appropriate without and with contrast</td>
</tr>
<tr>
<td>Transmasculine (female-to-male) patient with bilateral mastectomies ("top surgery") at any age and any risk.</td>
<td>Usually not appropriate without and with contrast</td>
</tr>
<tr>
<td>Transmasculine (female-to-male) patient with reduction mammoplasty or no chest surgery, 40 years of age or older; average-risk patient (less than 15% lifetime risk of breast cancer).</td>
<td>Usually not appropriate without and with contrast</td>
</tr>
<tr>
<td>Transmasculine (female-to-male) patient with reduction mammoplasty or no chest surgery, ≥30 years of age. Intermediate risk (patient with personal history of breast cancer, lobular neoplasia, atypical ductal hyperplasia, or 15% to 20% lifetime risk of breast cancer).</td>
<td>May be appropriate without and with contrast; usually not appropriate without contrast</td>
</tr>
<tr>
<td>Transmasculine (female-to-male) patient with reduction mammoplasty or no chest surgery, 25 to 30 years of age or older. High risk (with genetic predisposition to breast cancer or untested patient with a first-degree relative with genetic predisposition to breast cancer, patient with a history of chest irradiation between 10 to 30 years of age, patient with 20% or greater lifetime risk of breast cancer).</td>
<td>Usually appropriate without and with contrast; usually not appropriate without contrast</td>
</tr>
<tr>
<td>Average-risk females with nondense breasts</td>
<td>Usually not appropriate without and with contrast</td>
</tr>
<tr>
<td>Intermediate-risk females with nondense breasts</td>
<td>Usually not appropriate without and with contrast</td>
</tr>
<tr>
<td>High-risk females with nondense breasts</td>
<td>Usually not appropriate without and with contrast</td>
</tr>
<tr>
<td>Average-risk females with dense breasts</td>
<td>May be appropriate without and with contrast; usually not appropriate without contrast</td>
</tr>
<tr>
<td>Intermediate-risk females with dense breasts</td>
<td>May be appropriate without and with contrast; usually not appropriate without contrast</td>
</tr>
<tr>
<td>High-risk females with dense breasts</td>
<td>Usually appropriate without and with contrast; usually not appropriate without contrast</td>
</tr>
</tbody>
</table>

MRI: magnetic resonance imaging.

The College (2018) issued recommendations for breast cancer screening in women at higher-than-average risk.70 The recommendations for MRI are as follows:

- "For women with genetics-based increased risk (and their untested first-degree relatives), history of chest radiation, calculated lifetime risk of 20% or more, breast MRI should be performed annually beginning at age 25 to 30."
- "For women with personal histories of breast cancer and dense breast tissue, or those diagnosed before age 50, annual surveillance with breast MRI is recommended."
- "For women with personal histories of breast cancer not included in the above, or with LCIS or atypia on prior biopsy, MRI should be considered, especially if other risk factors are present."

American Society of Clinical Oncology

The American Society of Clinical Oncology (2006) has published guidelines for follow-up and management after primary treatment of breast cancer.71 In 2013, the guidelines were updated with a systematic review of the literature through March 2012, and no revisions were made.72 The guidelines recommended against the use of breast MRI "for routine follow-up in an otherwise asymptomatic patient with no specific findings on clinical examination."72 Furthermore, "The decision to use breast
MRI in high-risk patients should be made on an individual basis depending on the complexity of the clinical scenario.71

International Late Effects of Childhood Cancer Guideline Harmonization Group

The International Late Effects of Childhood Cancer Guideline Harmonization Group from 9 countries (2020) published evidence-based recommendations for breast cancer surveillance in female survivors of childhood, adolescent, and young adult cancer who received chest irradiation before age 30 years and have no genetic predisposition to breast cancer.73 The guideline recommends to initiate annual breast MRI exams beginning at age 25 or 8 years after radiation. Based on a systematic review of the literature to June 2019, the authors recommended mammography and breast MRI for surveillance (strong recommendation based on high-quality evidence with a low degree of uncertainty). The authors acknowledged that “there are no studies of survivors of [childhood, adolescent, and young adult] cancer that investigated whether early detection by MRI or mammography results in better prognosis.” However, the panel concluded that the benefits of initiating early annual mammography and MRI are expected to outweigh the harms.

U.S. Preventive Services Task Force Recommendations

The U.S. Preventive Services Task Force (2016) updated its recommendations on breast cancer screening. The Task Force concluded the following on breast MRI:74

“... the current evidence is insufficient to assess the balance of benefits and harms of adjunctive screening for breast cancer using breast ultrasonography, magnetic resonance imaging, DBT [digital breast tomosynthesis], or other methods in women identified to have dense breasts on an otherwise negative screening mammogram.”

These guidelines are currently undergoing an update and updated recommendations may be forthcoming.

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials

Some currently ongoing and unpublished trials that might influence this review are listed in Table 18.

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT05797545</td>
<td>Comparison of Ultrasound and Breast MRI for Breast Cancer Detection Among Women With Dense Breasts and a Personal History of Breast Cancer</td>
<td>1464</td>
<td>May 2028</td>
</tr>
<tr>
<td>NCT05704062</td>
<td>Multi-Functional Magnetic Resonance Imaging Modalities for Assessment of Breast Cancer Response to Neoadjuvant Chemotherapy</td>
<td>135</td>
<td>Nov 2026</td>
</tr>
<tr>
<td>NCT05825768</td>
<td>Preoperative Magnetic Resonance Imaging to Obtain Adequate Resection Margins (PRIMAR) Trial</td>
<td>440</td>
<td>Aug 2026</td>
</tr>
<tr>
<td>NCT01805076</td>
<td>Effect of Preoperative Breast MRI on Surgical Outcomes, Costs and Quality of Life of Women With Breast Cancer</td>
<td>317</td>
<td>Feb 2025</td>
</tr>
<tr>
<td>NCT01035112</td>
<td>Magnetic Resonance Imaging of Breast Cancer</td>
<td>445</td>
<td>May 2027</td>
</tr>
<tr>
<td>NCT00474604</td>
<td>MRI Evaluation of Breast Tumor Growth and Treatment Response</td>
<td>209</td>
<td>Dec 2025</td>
</tr>
</tbody>
</table>

Unpublished

Reproduction without authorization from Blue Shield of California is prohibited
References

15. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Breast magnetic resonance imaging (MRI) for detection or diagnosis of primary or recurrent breast cancer TEC Assessments. 2004;Volume 19:Tab 1.

Documentation for Clinical Review

Please provide the following documentation:

- History and physical and/or consultation notes including:
 - Age
 - Ethnicity/Race
 - Age at time of first live birth, if applicable
 - Age at time of first menstrual period
 - History and number of breast biopsies and pathology results
 - Diagnosis of atypical hyperplasia with at least one breast biopsy
 - History of radiation therapy and at what age, if applicable
 - Reason for MRI
 - Relatives with a history of breast cancer or other family history as applicable
 - Prior genetic testing reports, if applicable (panel testing, known familial variant, etc.)
 - Pathology report(s), if applicable
 - Radiology report(s) (e.g., mammogram, breast ultrasound)

Post Service (in addition to the above, please include the following):

- Results/reports of tests performed
- Procedure report(s)

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy.
The following codes are included below for informational purposes. Inclusion or exclusion of a code(s) does not constitute or imply member coverage or provider reimbursement policy. Policy Statements are intended to provide member coverage information and may include the use of some codes for clarity. The Policy Guidelines section may also provide additional information for how to interpret the Policy Statements and to provide coding guidance in some cases.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT*</td>
<td>77046</td>
<td>Magnetic resonance imaging, breast, without contrast material; unilateral</td>
</tr>
<tr>
<td>CPT*</td>
<td>77047</td>
<td>Magnetic resonance imaging, breast, without contrast material; bilateral</td>
</tr>
<tr>
<td>CPT*</td>
<td>77048</td>
<td>Magnetic resonance imaging, breast, without and with contrast material(s), including computer-aided detection (CAD real-time lesion detection, characterization and pharmacokinetic analysis), when performed; unilateral</td>
</tr>
<tr>
<td>CPT*</td>
<td>77049</td>
<td>Magnetic resonance imaging, breast, without and with contrast material(s), including computer-aided detection (CAD real-time lesion detection, characterization and pharmacokinetic analysis), when performed; bilateral</td>
</tr>
<tr>
<td>HCPCS</td>
<td>C8903</td>
<td>Magnetic resonance imaging with contrast, breast; unilateral</td>
</tr>
<tr>
<td>HCPCS</td>
<td>C8905</td>
<td>Magnetic resonance imaging without contrast followed by with contrast, breast; unilateral</td>
</tr>
<tr>
<td>HCPCS</td>
<td>C8906</td>
<td>Magnetic resonance imaging with contrast, breast; bilateral</td>
</tr>
<tr>
<td>HCPCS</td>
<td>C8908</td>
<td>Magnetic resonance imaging without contrast followed by with contrast, breast; bilateral</td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/12/1994</td>
<td>New Policy Adoption</td>
</tr>
<tr>
<td>04/28/1998</td>
<td>No change</td>
</tr>
<tr>
<td>06/13/2001</td>
<td>BCBSA Medical Policy adoption</td>
</tr>
<tr>
<td>02/13/2002</td>
<td>Adopted BCBSA TEC for differential diagnosis of a breast lesion to avoid biopsy</td>
</tr>
<tr>
<td>06/01/2003</td>
<td>Policy Review</td>
</tr>
<tr>
<td>06/01/2005</td>
<td>Administrative Review</td>
</tr>
<tr>
<td>06/28/2007</td>
<td>Policy Revision</td>
</tr>
<tr>
<td>07/02/2007</td>
<td>Policy published</td>
</tr>
<tr>
<td>05/16/2008</td>
<td>BCBSA Medical Policy Adoption. Revised ACS guidelines and lifetime risk figure</td>
</tr>
</tbody>
</table>
Effective Date | Action
--- | ---
09/27/2013 | Policy revision with position change
08/29/2014 | Policy title change from MRI of the Breast
 | Policy revision with position change
09/30/2015 | Policy revision without position change
12/01/2016 | Policy title change from Magnetic Resonance Imaging of the Breast
 | Policy revision without position change
07/01/2017 | Coding update
12/01/2017 | Policy revision without position change
11/01/2018 | Policy revision without position change
01/01/2019 | Coding update
03/01/2019 | Administrative Update
12/16/2019 | Policy revision without position change
05/01/2020 | Administrative update. Policy statement and guidelines updated.
11/01/2021 | Annual review. Policy statement and literature updated.
11/01/2022 | Annual review. Policy statement and literature updated.
11/01/2023 | Annual review. No change to policy statement. Literature review updated.

Definitions of Decision Determinations

Medically Necessary: Services that are Medically Necessary include only those which have been established as safe and effective, are furnished under generally accepted professional standards to treat illness, injury or medical condition, and which, as determined by Blue Shield, are: (a) consistent with Blue Shield medical policy; (b) consistent with the symptoms or diagnosis; (c) not furnished primarily for the convenience of the patient, the attending Physician or other provider; (d) furnished at the most appropriate level which can be provided safely and effectively to the patient; and (e) not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of the Member’s illness, injury, or disease.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements and Feedback (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member’s health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member’s eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department at (800) 541-6652, or the Transplant Case Management Department at (800) 637-2066 ext. 3507708 or visit the provider portal at www.blueshieldca.com/provider.
We are interested in receiving feedback relative to developing, adopting, and reviewing criteria for medical policy. Any licensed practitioner who is contracted with Blue Shield of California or Blue Shield of California Promise Health Plan is welcome to provide comments, suggestions, or concerns. Our internal policy committees will receive and take your comments into consideration.

For utilization and medical policy feedback, please send comments to: MedPolicy@blueshieldca.com

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.
<table>
<thead>
<tr>
<th>BEFORE</th>
<th>AFTER</th>
</tr>
</thead>
</table>
| **Policy Statement:**
Magnetic Resonance Imaging (MRI) for Screening Uses
I. MRI of the breast may be considered **medically necessary** for breast cancer screening of an individual with any of the following conditions:
 A. Lobular carcinoma in situ
 B. A known *BRCA1* or *BRCA2* variant
 C. High risk of *BRCA1* or *BRCA2* variant due to a known presence of the variant in relatives
 D. Documentation of any of the following:
 1. Gene variant associated with high risk, e.g., *TP53* (Li-Fraumeni syndrome), *PTEN* (Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome), *CDH1*, and *STK11*, *ATM*, *CHEK2*, and *PALB2*
 2. A first-degree relative with a gene variant associated with high risk, e.g., *TP53* (Li-Fraumeni syndrome), *PTEN* (Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome), *CDH1*, and *STK11*, *ATM*, *CHEK2*, and *PALB2*
 E. High risk (lifetime risk about greater than or equal to 20% or 5-year risk of greater than or equal to 3%) of developing breast cancer as identified by models that are largely defined by family history as documented by the provider
 F. Received radiotherapy to the chest between 10 and 30 years of age

| MRI for Detection Uses
II. MRI of the breast may be considered **medically necessary** for any of the following:
 A. Suspected occult breast primary tumor in patients with axillary nodal adenocarcinoma (i.e., negative mammography and physical exam) |

<table>
<thead>
<tr>
<th>Red font: Verbiage removed</th>
<th>Blue font: Verbiage Changes/Additions</th>
</tr>
</thead>
</table>
| Magnetic Resonance Imaging (MRI) for Screening Uses
I. MRI of the breast may be considered **medically necessary** for breast cancer screening of an individual with any of the following conditions:
 A. Lobular carcinoma in situ
 B. A known *BRCA1* or *BRCA2* variant
 C. High risk of *BRCA1* or *BRCA2* variant due to a known presence of the variant in relatives
 D. Documentation of any of the following:
 1. Gene variant associated with high risk, e.g., *TP53* (Li-Fraumeni syndrome), *PTEN* (Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome), *CDH1*, and *STK11*, *ATM*, *CHEK2*, and *PALB2*
 2. A first-degree relative with a gene variant associated with high risk, e.g., *TP53* (Li-Fraumeni syndrome), *PTEN* (Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome), *CDH1*, and *STK11*, *ATM*, *CHEK2*, and *PALB2*
 E. High risk (lifetime risk about greater than or equal to 20% or 5-year risk of greater than or equal to 3%) of developing breast cancer as identified by models that are largely defined by family history as documented by the provider
 F. Received radiotherapy to the chest between 10 and 30 years of age

| MRI for Detection Uses
II. MRI of the breast may be considered **medically necessary** for any of the following:
 A. Suspected occult breast primary tumor in individuals with axillary nodal adenocarcinoma (i.e., negative mammography and physical exam). |
POLICY STATEMENT

<table>
<thead>
<tr>
<th>BEFORE</th>
<th>AFTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. A new diagnosis of breast cancer to evaluate the contralateral breast with both of the following:</td>
<td>B. A new diagnosis of breast cancer to evaluate the contralateral breast with both of the following:</td>
</tr>
<tr>
<td>1. Clinical exam is normal</td>
<td>1. Clinical exam is normal</td>
</tr>
<tr>
<td>2. Mammographic findings are normal</td>
<td>2. Mammographic findings are normal</td>
</tr>
</tbody>
</table>

MRI for Treatment-Related Uses

III. MRI of the breast for treatment-related issues may be considered medically necessary for any of the following:

<table>
<thead>
<tr>
<th>BEFORE</th>
<th>AFTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Preoperative tumor mapping of the involved (ipsilateral) breast to evaluate the presence of multicentric disease in individuals with clinically localized breast cancer who are candidates for breast conservation therapy</td>
<td>A. Preoperative tumor mapping of the involved (ipsilateral) breast to evaluate the presence of multicentric disease in individuals with clinically localized breast cancer who are candidates for breast conservation therapy</td>
</tr>
<tr>
<td>B. Presurgical planning in individuals with locally advanced breast cancer (before and after completion of neoadjuvant chemotherapy) to permit tumor localization and characterization</td>
<td>B. Presurgical planning in individuals with locally advanced breast cancer (before and after completion of neoadjuvant chemotherapy) to permit tumor localization and characterization</td>
</tr>
<tr>
<td>C. To determine the presence of pectoralis major muscle/chest wall invasion in individuals with posteriorly located tumors</td>
<td>C. To determine the presence of pectoralis major muscle/chest wall invasion in individuals with posteriorly located tumors</td>
</tr>
<tr>
<td>D. To evaluate a documented abnormality of the breast before obtaining an MRI-guided biopsy when there is documentation that other methods, such as palpation or ultrasound, are not able to localize the lesion for biopsy</td>
<td>D. To evaluate a documented abnormality of the breast before obtaining an MRI-guided biopsy when there is documentation that other methods, such as palpation or ultrasound, are not able to localize the lesion for biopsy</td>
</tr>
</tbody>
</table>

IV. MRI of the breast is considered investigational for any of the following indications:

<table>
<thead>
<tr>
<th>BEFORE</th>
<th>AFTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Routine screening for an average-risk individual</td>
<td>A. Routine screening for an average-risk individual</td>
</tr>
<tr>
<td>B. Screening for breast cancer when the sensitivity of mammography (i.e., mammography using low-dose x-rays for imaging) is limited (i.e., dense breasts, breast implants, scarring after breast cancer treatment)</td>
<td>B. Screening for breast cancer when the sensitivity of mammography (i.e., mammography using low-dose x-rays for imaging) is limited (i.e., dense breasts, breast implants, scarring after breast cancer treatment)</td>
</tr>
<tr>
<td>C. The test is to diagnose of low-suspicion findings on conventional testing that are not indicated for immediate biopsy and referred for short-interval follow-up</td>
<td>C. The test is to diagnose low-suspicion findings on conventional testing that are not indicated for immediate biopsy and referred for short-interval follow-up</td>
</tr>
<tr>
<td>D. The test is to diagnose of a suspicious breast lesion in order to avoid biopsy</td>
<td>D. The test is to diagnose a suspicious breast lesion in order to avoid biopsy</td>
</tr>
</tbody>
</table>
POLICY STATEMENT

<table>
<thead>
<tr>
<th>BEFORE</th>
<th>AFTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red font: Verbiage removed</td>
<td>Blue font: Verbiage Changes/Additions</td>
</tr>
<tr>
<td>E. Determining the level of response during neoadjuvant chemotherapy in individuals with locally advanced breast cancer</td>
<td>E. Determining the level of response during neoadjuvant chemotherapy in individuals with locally advanced breast cancer</td>
</tr>
<tr>
<td>F. Evaluating for residual tumor in individuals with positive margins after initial lumpectomy or breast conservation surgery</td>
<td>F. Evaluating for residual tumor in individuals with positive margins after initial lumpectomy or breast conservation surgery</td>
</tr>
</tbody>
</table>