Policy Statement

General genetic cancer susceptibility panel testing is considered investigational including but not limited to screening or when using a broad panel.

Unless approved in another policy, genetic cancer susceptibility panel testing (e.g., pan cancer or large panels) is considered investigational.

Multi-gene panel testing for hereditary cancers other than breast, ovarian and colorectal cancer (see Policy Guidelines) are considered investigational.

NOTE: Refer to Appendix A to see the policy statement changes (if any) from the previous version.

Policy Guidelines

Limited Panel Testing
Some limited panel testing may be considered medically necessary when criteria are met as addressed in other Blue Shield of California medical policies specific to those panels.

Testing related to hereditary breast and ovarian cancer, see Blue Shield of California Medical Policy: Genetic Testing for BRCA1 or BRCA2 for Hereditary Breast/Ovarian Cancer Syndrome and Other High-Risk Cancers.

Testing related to hereditary colorectal cancer, see Blue Shield of California Medical Policy: Genetic Testing for Lynch Syndrome and Other Inherited Colon Cancer Syndromes.

Comprehensive Variant Analysis
Comprehensive variant analysis currently includes sequencing the coding regions and intron and exon splice sites, as well as testing to detect common large deletions and rearrangements that can be missed with sequence analysis alone. In addition, before August 2006, testing for large deletions and rearrangements was not performed, thus some patients with familial breast cancer who had negative BRCA testing before this time may consider repeat testing for the rearrangements (see Policy section for criteria).

Genetics Nomenclature Update
The Human Genome Variation Society nomenclature is used to report information on variants found in DNA and serves as an international standard in DNA diagnostics. It is being implemented for genetic testing medical evidence review updates starting in 2017 (see Table PG1). The Society’s nomenclature is recommended by the Human Variome Project, the Human Genome Organization, and by the Human Genome Variation Society itself.

The American College of Medical Genetics and Genomics and the Association for Molecular Pathology standards and guidelines for interpretation of sequence variants represent expert opinion from both organizations, in addition to the College of American Pathologists. These recommendations primarily apply to genetic tests used in clinical laboratories, including genotyping, single genes, panels, exomes, and genomes. Table PG2 shows the recommended standard terminology—“pathogenic,” “likely pathogenic,” “uncertain significance,” “likely benign,” and “benign”—to describe variants identified that cause Mendelian disorders.
Table PG1. Nomenclature to Report on Variants Found in DNA

<table>
<thead>
<tr>
<th>Previous</th>
<th>Updated</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutation</td>
<td>Disease-associated</td>
<td>Disease-associated change in the DNA sequence</td>
</tr>
<tr>
<td>Variant</td>
<td>Disease-associated variant</td>
<td>Change in the DNA sequence</td>
</tr>
<tr>
<td>Familial variant</td>
<td>Disease-associated variant</td>
<td>Disease-associated variant identified in a proband for use in subsequent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>targeted genetic testing in first-degree relatives</td>
</tr>
</tbody>
</table>

Table PG2. ACMG-AMP Standards and Guidelines for Variant Classification

<table>
<thead>
<tr>
<th>Variant Classification</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenic</td>
<td>Disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Likely pathogenic</td>
<td>Likely disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Variant of uncertain significance</td>
<td>Change in DNA sequence with uncertain effects on disease</td>
</tr>
<tr>
<td>Likely benign</td>
<td>Likely benign change in the DNA sequence</td>
</tr>
<tr>
<td>Benign</td>
<td>Benign change in the DNA sequence</td>
</tr>
</tbody>
</table>

ACMG: American College of Medical Genetics and Genomics; AMP: Association for Molecular Pathology.

Genetic Counseling

Genetic counseling is primarily aimed at patients who are at risk for inherited disorders, and experts recommend formal genetic counseling in most cases when genetic testing for an inherited condition is considered. The interpretation of the results of genetic tests and the understanding of risk factors can be very difficult and complex. Therefore, genetic counseling will assist individuals in understanding the possible benefits and harms of genetic testing, including the possible impact of the information on the individual’s family. Genetic counseling may alter the utilization of genetic testing substantially and may reduce inappropriate testing. Genetic counseling should be performed by an individual with experience and expertise in genetic medicine and genetic testing methods.

Coding

There are CPT codes for genomic sequencing procedures (or next-generation sequencing panels). If the panel meets the requirements listed in the code descriptor, the following codes may be used:

- **81432**: Hereditary breast cancer-related disorders (e.g., hereditary breast cancer, hereditary ovarian cancer, hereditary endometrial cancer); genomic sequence analysis panel, must include sequencing of at least 14 genes, including ATM, BRCA1, BRCA2, BRI1, CDH1, MLH1, MSH2, MSH6, NBN, PALB2, PTEN, RAD51C, STK11, and TP53
- **81433**: Hereditary breast cancer-related disorders (e.g., hereditary breast cancer, hereditary ovarian cancer, hereditary endometrial cancer); duplication/deletion analysis panel, must include analyses for BRCA1, BRCA2, MLH1, MSH2, and STK11
- **81435**: Hereditary colon cancer disorders (e.g., Lynch syndrome, PTEN hamartoma syndrome, Cowden syndrome, familial adenomatosis polyposis); genomic sequence analysis panel, must include sequencing of at least 10 genes, including APC, BMPRIA, CDH1, MLH1, MSH2, MSH6, MUTYH, PTEN, SMAD4, and STK11
- **81436**: Hereditary colon cancer disorders (e.g., Lynch syndrome, PTEN hamartoma syndrome, Cowden syndrome, familial adenomatosis polyposis); duplication/deletion analysis panel, must include analysis of at least 5 genes, including MLH1, MSH2, EPCAM, SMAD4, and STK11
- **81437**: Hereditary neuroendocrine tumor disorders (e.g., medullary thyroid carcinoma, parathyroid carcinoma, malignant pheochromocytoma or paraganglioma); genomic sequence analysis panel, must include sequencing of at least 6 genes, including MAX, SDHB, SDHC, SDHD, TMEM127, and VHL
- **81438**: Hereditary neuroendocrine tumor disorders (e.g., medullary thyroid carcinoma, parathyroid carcinoma, malignant pheochromocytoma or paraganglioma); duplication/deletion analysis panel, must include analyses for SDHB, SDHC, SDHD, and VHL
- **81445**: Targeted genomic sequence analysis panel, solid organ neoplasm, DNA analysis, and RNA analysis when performed, 5-50 genes (e.g., ALK, BRAF, CDKN2A, EGFR, ERBB2,
KIT, KRAS, NRAS, MET, PDGFA, PDGFRB, PGR, PIK3CA, PTEN, RET), interrogation for sequence variants and copy number variants or rearrangements, if performed

- **81450**: Targeted genomic sequence analysis panel, hematolymphoid neoplasm or disorder, DNA analysis, and RNA analysis when performed, 5-50 genes (e.g., BRAF, CEBPA, DNMT3A, EZH2, FLT3, IDH1, IDH2, JAK2, KRAS, KIT, MLL, NRAS, NPM1, NOTCH1), interrogation for sequence variants, and copy number variants or rearrangements, or isoform expression or mRNA expression levels, if performed

- **81455**: Targeted genomic sequence analysis panel, solid organ or hematolymphoid neoplasm, DNA analysis, and RNA analysis when performed, 51 or greater genes (e.g., ALK, BRAF, CDKN2A, CEBPA, DNMT3A, EGFR, ERBB2, EZH2, FLT3, IDH1, IDH2, JAK2, KIT, KRAS, MLL, NPM1, NRAS, MET, NOTCH1, PDGFA, PDGFRB, PGR, PIK3CA, PTEN, RET), interrogation for sequence variants, and copy number variants or rearrangements, if performed

There is a test that will identify a subtype of Triple Negative Breast Cancer (ER-, PR-, HER2-):

- **0153U**: Oncology (breast), mRNA, gene expression profiling by next-generation sequencing of 101 genes, utilizing formalin-fixed paraffin-embedded tissue, algorithm reported as a triple negative breast cancer clinical subtype(s) with information on immune cell involvement

There is a CPT PLA code that represents BRCAPlus by Ambry Genetics:

- **0129U**: Hereditary breast cancer-related disorders (e.g., hereditary breast cancer, hereditary ovarian cancer, hereditary endometrial cancer), genomic sequence analysis and deletion/duplication analysis panel (ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, PTEN, and TP53)

There is a CPT PLA code that represents +RNAinsight™ for ColoNext® by Ambry Genetics:

- **0130U**: Hereditary colon cancer disorders (e.g., Lynch syndrome, PTEN hamartoma syndrome, Cowden syndrome, familial adenomatosis polyposis), targeted mRNA sequence analysis panel (APC, CDH1, CHEK2, MLH1, MSH2, MSH6, MUTYH, PMS2, PTEN, and TP53) (List separately in addition to code for primary procedure)

There is a CPT PLA code that represents +RNAinsight™ for BreastNext® by Ambry Genetics:

- **0131U**: Hereditary breast cancer-related disorders (e.g., hereditary breast cancer, hereditary ovarian cancer, hereditary endometrial cancer), targeted mRNA sequence analysis panel (13 genes) (List separately in addition to code for primary procedure)

There is a CPT PLA code that represents +RNAinsight™ for OvaNext® by Ambry Genetics:

- **0132U**: Hereditary ovarian cancer-related disorders (e.g., hereditary breast cancer, hereditary ovarian cancer, hereditary endometrial cancer), targeted mRNA sequence analysis panel (17 genes) (List separately in addition to code for primary procedure)

There is a CPT PLA code that represents +RNAinsight™ for ProstateNext® by Ambry Genetics:

- **0133U**: Hereditary prostate cancer-related disorders, targeted mRNA sequence analysis panel (11 genes) (List separately in addition to code for primary procedure)

There is a CPT PLA code that represents +RNAinsight™ for CancerNext® by Ambry Genetics:

- **0134U**: Hereditary pan cancer (e.g., hereditary breast and ovarian cancer, hereditary endometrial cancer, hereditary colorectal cancer), targeted mRNA sequence analysis panel (18 genes) (List separately in addition to code for primary procedure)

There is a CPT PLA code that represents +RNAinsight™ for GYNPlus® by Ambry Genetics:

- **0135U**: Hereditary gynecological cancer (e.g., hereditary breast and ovarian cancer, hereditary endometrial cancer, hereditary colorectal cancer), targeted mRNA sequence analysis panel (12 genes) (List separately in addition to code for primary procedure)
There is a CPT PLA code that represents +RNAinsight™ for ATM by Ambry Genetics:

- **0136U**: ATM (ataxia telangiectasia mutated) (e.g., ataxia telangiectasia) mRNA sequence analysis (List separately in addition to code for primary procedure)

There is a CPT PLA code that represents +RNAinsight™ for PALB2 by Ambry Genetics:

- **0137U**: PALB2 (partner and localizer of BRCA2) (e.g., breast and pancreatic cancer) mRNA sequence analysis (List separately in addition to code for primary procedure)

There is a CPT PLA code that represents +RNAinsight™ for BRCA1/2 by Ambry Genetics:

- **0138U**: BRCA1 (BRCA1, DNA repair associated), BRCA2 (BRCA2, DNA repair associated) (e.g., hereditary breast and ovarian cancer) mRNA sequence analysis (List separately in addition to code for primary procedure)

If the panel does not meet the criteria in the specific code descriptors or if the specific analyte is not listed in the more specific CPT codes, then unlisted code 81479 would be reported. The unlisted code would be reported once to represent all of the unlisted analytes in the panel.

Description

Commercially available cancer susceptibility gene panels can test for multiple variants associated with a specific type of cancer or can include variants associated with a wide variety of cancers. Some of these variants are associated with inherited cancer syndromes. The cancer type(s), as well as a cancer history involving multiple family members, increase the clinical concern for the presence of a heritable genetic variant. It has been proposed that variant testing using next-generation sequencing (NGS) technology to analyze multiple genes at one time (panel testing) can optimize genetic testing in these patients compared with sequencing single genes.

Related Policies

- Gene Variants (PALB2, CHEK2 and ATM) Associated With Breast Cancer in Individuals at High Breast Cancer Risk
- General Approach to Evaluating the Utility of Genetic Panels
- Genetic Testing for BRCA1 or BRCA2 for Hereditary Breast/Ovarian Cancer Syndrome and Other High-Risk Cancers
- Genetic Testing for Familial Cutaneous Malignant Melanoma
- Genetic Testing for Lynch Syndrome and Other Inherited Colon Cancer Syndromes
- Germline Genetic Testing for Pancreatic Cancer Susceptibility Genes
- Molecular Testing for Germline BRIP1, RAD51C, and RAD51D Variants Associated with Ovarian Cancer

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.
Regulatory Status

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments. Laboratories that offer laboratory-developed tests must be licensed by the Clinical Laboratory Improvement Amendments for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of these tests.

Rationale

Background
Genetic Testing for Cancer Susceptibility
Genetic testing for cancer susceptibility may be approached by a focused method that involves testing for gene(s) that may be the cause of the heritable or familial cancer. Panel testing with next-generation sequencing (NGS) involves evaluating sequence variants in multiple genes at one time.

Multiple commercial companies and medical center laboratories offer genetic testing panels that use NGS methods for hereditary cancers. Next-generation sequencing is one of several methods that use massively parallel platforms to allow the sequencing of large stretches of DNA. Panel testing is potentially associated with greater efficiencies in the evaluation of genetic diseases; however, it may provide information on genetic variants of uncertain clinical significance or findings that would not lead to changes in patient management.

Genes Included in Next-Generation Sequencing Panels
The following summarizes the function and disease association of major genes included in NGS panels. This summary is not comprehensive.

BRCA1 and BRCA2 Variants
BRCA1 and BRCA2 germline variants are associated with hereditary breast and ovarian cancer syndrome, which is associated most strongly with increased susceptibility to breast cancer at an early age, bilateral breast cancer, male breast cancer, ovarian cancer, cancer of the fallopian tube, and primary peritoneal cancer. BRCA1 and BCRA2 variants are also associated with increased risk of other cancers, including prostate cancer, pancreatic cancer, gastrointestinal cancers, melanoma, and laryngeal cancer.

APC Variants
APC germline variants are associated with familial adenomatous polyposis (FAP) and attenuated FAP. Familial adenomatous polyposis is an autosomal dominant colon cancer predisposition syndrome characterized by hundreds to thousands of colorectal adenomatous polyps and accounts for about 1% of all colorectal cancers (CRCs).

ATM Variants
ATM is associated with the autosomal recessive condition ataxia-telangiectasia. This condition is characterized by progressive cerebellar ataxia with onset between the ages of 1 and 4 years, telangiectasias of the conjunctivae, oculomotor apraxia, immune defects, and cancer predisposition, particularly leukemia and lymphoma.

BARD1, BRIP1, MRE11A, NBN, RAD50, and RAD51C Variants
BARD1, BRIP1, MRE11A, NBN, RAD50, and RAD51C are genes in the Fanconi anemia/BRCA pathway. Variants in these genes are estimated to confer up to a 4-fold increase in the risk of breast cancer. This pathway is also associated with a higher risk of ovarian cancer and, less often, pancreatic cancer.
BMPR1A and SMAD4 Variants
BMPR1A and SMAD4 are genes mutated in juvenile polyposis syndrome and account for 45% to 60% of cases of juvenile polyposis syndrome. Juvenile polyposis syndrome is an autosomal dominant disorder that predisposes to the development of polyps in the gastrointestinal tract. Malignant transformation can occur, and the risk of gastrointestinal cancer has been estimated from 9% to 50%.

CHEK2 Variants
CHEK2 gene variants confer an increased risk of developing several different types of cancer, including breast, prostate, colon, thyroid, and kidney. CHEK2 regulates the function of the BRCA1 protein in DNA repair and has been associated with familial breast cancers.

CDH1 Variants
CDH1 germline variants are associated with lobular breast cancer in women and with hereditary diffuse gastric cancer (DGC). The estimated cumulative risk of gastric cancer for CDH1 variant carriers by age 80 years is 70% for men and 56% for women. CDH1 variants are associated with a lifetime risk of 39% to 52% of lobular breast cancer.

EPCAM, MLH1, MSH2, MSH6, and PMS2 Variants
EPCAM, MLH1, MSH2, MSH6, and PMS2 are mismatch repair genes associated with Lynch syndrome (hereditary nonpolyposis CRC). Lynch syndrome is estimated to cause 2% to 5% of all colon cancers. Lynch syndrome is associated with a significantly increased risk of several types of cancer—colon cancer (60% to 80% lifetime risk), uterine/endometrial cancer (20% to 60% lifetime risk), gastric cancer (11% to 19% lifetime risk), and ovarian cancer (4% to 13% lifetime risk). The risks of other types of cancer, including the small intestine, hepatobiliary tract, upper urinary tract, and brain, are also elevated.

MUTYH Variants
MUTYH germline variants are associated with an autosomal recessive form of hereditary polyposis. It has been reported that 33% and 57% of patients with clinical FAP and attenuated FAP, respectively, who are negative for variants in the APC gene, have MUTYH variants.

PALB2 Variants
PALB2 germline variants are associated with an increased risk of pancreatic and breast cancer. Familial pancreatic and/or breast cancer due to PALB2 variants are inherited in an autosomal dominant pattern.

PTEN Variants
PTEN variants are associated with PTEN hamartoma tumor syndrome (PHTS), which includes Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome, and Proteus syndrome. Cowden syndrome is characterized by a high risk of developing tumors of the thyroid, breast, and endometrium. Affected persons have a lifetime risk of up to 50% for breast cancer, 10% for thyroid cancer, and 5% to 10% for endometrial cancer.

STK11 Variants
STK11 germline variants are associated with Peutz-Jeghers syndrome, an autosomal dominant disorder, with a 57% to 81% risk of developing cancer by age 70, of which gastrointestinal and breast cancers are the most common.

TP53 Variants
TP53 variants are associated with Li-Fraumeni syndrome. People with TP53 variants have a 50% risk of developing any of the associated cancers by age 30 and a lifetime risk up to 90%, including sarcomas, breast cancer, brain tumors, and adrenal gland cancers.
NF1 Variants
The NF1 gene encodes a negative regulator in the ras signal transduction pathway. Variants in the NF1 gene have been associated with neurofibromatosis type 1, juvenile myelomonocytic leukemia, and Watson syndrome.

RAD51D Variants
RAD51D germline variants are associated with familial breast and ovarian cancers.

CDK4 Variants
Cyclin-dependent kinase-4 is a protein-serine kinase involved in cell cycle regulation. Variants in the CDK4 gene are associated with a variety of cancers, particularly cutaneous melanoma.

CDKN2A Variants
The CDKN2A gene encodes proteins that act as multiple tumor suppressors through their involvement in 2 cell cycle regulatory pathways: the p53 pathway and the RB1 pathway. Variants or deletions in CDKN2A are frequently found in multiple types of tumor cells. Germline variants in CDKN2A have been associated with the risk of melanoma, along with pancreatic and central nervous system cancers.

RET Variants
RET encodes a receptor tyrosine kinase; variants in this gene are associated with multiple endocrine neoplasia syndromes (types IIA and IIB) and medullary thyroid carcinoma.

SDHA, SDHB, SDHC, SDHD, and SDHAF2 Variants
SDHA, SDHB, SDHC, SDHD, and SDHAF2 gene products are involved in the assembly and function of a component of the mitochondrial respiratory chain. Germline variants in these genes are associated with the development of paragangliomas, pheochromocytomas, gastrointestinal stromal tumors, and a PTEN-negative Cowden-like syndrome.

TMEM127 Variants
TMEM127 germline variants are associated with the risk of pheochromocytomas.

VHL Variants
VHL germline variants are associated with Hippel-Lindau syndrome, an autosomal dominant familial cancer syndrome. This syndrome is associated with various malignant and benign tumors, including central nervous system tumors, renal cancers, pheochromocytomas, and pancreatic neuroendocrine tumors.

FH Variants
FH variants are associated with renal cell and uterine cancers.

FLCN Variants
FLCN acts as a tumor suppressor gene; variants in this gene are associated with the autosomal dominant Birt-Hogg-Dube syndrome, which is characterized by hair follicle hamartomas, kidney tumors, and CRC.

MET Variants
MET is a proto-oncogene that acts as the hepatocyte growth factor receptor. MET variants are associated with hepatocellular carcinoma and papillary renal cell carcinoma.

MITF Variants
Microphthalmia-associated transcription factor (encoded by the MITF gene) is a transcription factor involved in melanocyte differentiation. MITF variants lead to several auditory-pigmentary syndromes, including Waardenburg syndrome type 2 and Tietze syndrome. MITF variants are also associated with melanoma and renal cell carcinoma.
TSC1 Variants
TSC1 and TSC2 encode the proteins hamartin and tuberin, which are involved in cell growth, differentiation, and proliferation. Variants in these genes are associated with the development of tuberous sclerosis complex, an autosomal dominant syndrome characterized by skin abnormalities, developmental delay, seizures, and multiple types of cancers, including central nervous system tumors, renal tumors (including angiomyolipomas, renal cell carcinomas), and cardiac rhabdomyomas.

XRCC2 Variants
XRCC2 encodes proteins thought to be related to the RAD51 protein product that is involved in DNA double-stranded breaks. Variants may be associated with Fanconi anemia and breast cancer.

FANCC Variants
FANCC is one of several DNA repair genes that mutate in Fanconi anemia, which is characterized by bone marrow failure and a high predisposition to multiple types of cancer.

AXIN2 Variants
AXIN2 variants are associated with FAP syndrome, although the phenotypes associated with AXIN2 variants do not appear to be well-characterized.

Hereditary Cancer and Cancer Syndromes
Genetic testing for breast and ovarian cancer syndromes is evaluated in Blue Shield of California Medical Policies: Genetic Testing for BRCA1 or BRCA2 for Hereditary Breast/Ovarian Cancer Syndrome and Other High-Risk Cancers, Gene Variants (PALB2, CHEK2 and ATM) Associated with Breast Cancer in Individuals at High Breast Cancer Risk and Molecular Testing for Germline BRIP1, RAD51C, and RAD51D Variants Associated with Ovarian Cancer.

Cowden syndrome is a part of PHTS and is the only PHTS disorder associated with a documented predisposition to malignancies.

Genetic testing for hereditary colon cancer syndromes are addressed in Blue Shield of California Medical Policy: Genetic Testing for Lynch Syndrome and Other Inherited Colon Cancer Syndromes.

Genetic testing for familial pancreatic testing is evaluated in Blue Shield of California Medical Policy: Germline Genetic Testing for Pancreatic Cancer Susceptibility Genes.

Hereditary diffuse gastric cancer is an autosomal dominant trait. Up to 50% of familial cases may be caused by variants in the CDH1 gene. In kindred families with CDH1-positive hereditary DGC, the risk of developing DGC is as high as 80% by 80 years of age. Other candidate genes include CTNNA1, BRCA2, STK11, SDHB, PRSS1, ATM, MSR1, and PALB2. Guidelines from the International Gastric Cancer Linkage Consortium have proposed genetic testing in families with 2 or more patients with gastric cancer at any age with at least 1 DGC, families with diagnoses of both DGC and lobular breast cancer, families with 2 or more patients with lobular breast cancer before the age of 50 years, and individuals meeting any of the following criteria: DGC before the age of 50 years, DGC at any age and Maori ethnicity, DGC at any age with a personal or family history (first degree relative) of cleft lip/palate, history of both DGC and lobular breast cancer diagnosed before the age of 70 years, bilateral lobular breast cancer diagnosed before the age of 70 years, or gastric in situ signet ring cells and/or pagetoid spread of signet ring cells in individuals younger than 50 years of age. Because of the high lifetime risk, prophylactic total gastrectomy between the ages of 20 and 30 is usually advised.

Literature Review
Evidence reviews assess whether a medical test is clinically useful. A useful test provides information to make a clinical management decision that improves the net health outcome.
That is, the balance of benefits and harms is better when the test is used to manage the condition than when another test or no test is used to manage the condition.

The first step in assessing a medical test is to formulate the clinical context and purpose of the test. The test must be technically reliable, clinically valid, and clinically useful for that purpose. Evidence reviews assess the evidence on whether a test is clinically valid and clinically useful. Technical reliability is outside the scope of these reviews, and credible information on technical reliability is available from other sources.

Expanded Cancer Susceptibility Panels

Clinical Context and Test Purpose

The purpose of predictive testing for cancer susceptibility is to predict cancer risk from a gene variant associated with a cancer syndrome in an affected member or in a family member of an affected person. The criteria under which predictive testing may be considered clinically useful are as follows:

- An association of the marker with the natural history of the disease has been established; and
- The clinical utility of identifying the variant has been established (e.g., by demonstrating that testing will lead to changes in the clinical management of the condition or changes in surveillance).

The question addressed in this evidence review is: Does expanded gene panel testing for genetic cancer susceptibility improve the net health outcome in patients with a personal and/or family history suggesting an inherited cancer syndrome?

The following PICO was used to select literature to inform this review.

Populations

The relevant population of interest are patients with a personal and/or family history suggesting an inherited cancer syndrome.

Intervention

The test being considered is an expanded gene testing panel.

Comparator

The following tests are currently being used to make decisions about managing cancer susceptibility: individual gene variant testing and limited panel testing for genes with high clinical validity.

Outcomes

The general outcomes of interest are overall survival, disease-specific survival, and test validity. Specific outcomes of interest include sensitivity and specificity, positive and negative predictive value, and reductions in morbidity and mortality.

Study Selection Criteria

For the evaluation of clinical validity, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology
- Included a suitable reference standard
- Patient/sample clinical characteristics were described
- Patient/sample selection criteria were described.

Review of Evidence

Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).
For genetic susceptibility to cancer, clinical validity can be considered at the following levels:

- Does a positive test identify a person as having an increased risk of developing cancer?
- If so, how high is the risk of cancer associated with a positive test?

Hereditary Cancer Panels

The likelihood that someone with a positive test result will develop cancer is affected not only by the presence of the gene variant but also by other modifying factors that can affect the penetrance of the variant (e.g., environmental exposures, personal behaviors) or by the presence or absence of variants in other genes.

Susswein et al (2016) reviewed the genetic test results and clinical data from a consecutive series of 10,030 patients referred for evaluation by 1 of 8 hereditary cancer panels (comprising combinations of 29 genes) between August 2013 and October 2014. Personal and family histories of cancer were obtained, and patients were categorized as having breast, colon, stomach, ovarian, endometrial, or pancreatic cancer; other cancer types were not singled out for analysis. Genetic variants were classified as pathogenic, likely pathogenic, variants of uncertain significance (VUS), likely benign, or benign according to the 2007 guidelines from the American College of Medical Genetics and Genomics.

Genes included in the panels were grouped into 3 risk categories based on penetrance data available in 2012, as follows:

- **high risk**: APC, BMP1A, BRCA1, BRCA2, CDH1, CDKN2A, EPCAM, MLH1, MSH2, MSH6, MUTYH, PM2, PTEN, SMAD4, STK11, TP53, and VHL
- **moderate risk**: ATM, CHEK2, and PALB2
- **increased but less well-defined risk**: AXIN2, BARD1, BRIP1, CDK4, FANCC, NBN, RAD51C, RAD51D, and XRCC2.

Overall, 9.0% (901/10,030) of the patients were found to carry at least 1 pathogenic or likely pathogenic variant, totaling 937 variants. Approximately half of the positive results were in well-established genes (including BRCA1 and BRCA2, Lynch syndrome, and other high-risk genes) and approximately half in genes with moderate or unknown risk. Likely pathogenic variants comprised 10.6% (99/937) of all positive results.

Individuals with colon/stomach cancer had the highest yield of positive results (14.8% [113/764]), the majority of which were in well-established colon cancer genes: MLH1, MSH2, MSH6, PM2, EPCAM, MUTYH, APC, PTEN, and STK11. However, 28.2% (35/124) were observed in genes not considered classical for gastrointestinal cancers: BRCA1, BRCA2, CHEK2, ATM, PALB2, BRIP1, and RAD51D.

For the breast cancer high-risk panels the highest VUS frequency was observed with the largest panel (29 genes), and the lowest VUS rate was observed with the high-risk breast cancer panel with 6 genes (BRCA1, BRCA2, CDH1, PTEN, STK11, and TP53). For patients with breast cancer, 9.7% (320/3,315) of women without prior BRCA1 and BRCA2 testing were found to carry a pathogenic or likely pathogenic variant, of which BRCA1 and BRCA2 accounted for 39.1%. Other high-risk genes included TP53, PTEN, and CDH1, and 5.2% (17/330) of the patients carried the Lynch syndrome genes. Moderate and less well-defined risk genes accounted for 41.2% (261/330) of all positive results among women with breast cancer.

Of women with ovarian cancer, BRCA1 and BRCA2 accounted for 50.5% of the 89 variants identified, Lynch syndrome genes for 14.3%, and moderate or less well-defined risk genes for 33.0%.

Of the 453 women with endometrial cancer, the yield for identifying a variant was 11.9% (n=54): 7.3% (n=33) were within a Lynch gene, most commonly MSH6; CHEK2 was positive in 7% with an overall frequency of 1.5% and 6 positive results (10.9%) were identified in BRCA1 and BRCA2.
Among 190 pancreatic cancer patients, the yield for identifying a variant was 10.5% (n=20), most commonly identified in ATM (40.0% [8/20]), BRCA2 (25.0% [5/20]), and PALB2 (15.0% [3/20]).

Six (33%) of the 18 patients with positive findings in TP53 did not meet classic Li-Fraumeni syndrome, Li-Fraumeni-like syndrome, 2009 Chompret, or National Comprehensive Cancer Network guideline criteria for TP53 testing, resulting in a frequency of 0.06% (6/9,605) unanticipated positive results. Four patients had a positive CDH1 result, 2 of whom did not meet the International Gastric Cancer Linkage Consortium testing criteria, resulting in a frequency of 0.02% (2/8,708) positive CDH1 results.

Overall, yields among patients with breast, ovarian, and colon/stomach cancers were 9.7%, 13.4%, and 14.8%, respectively. Approximately 5.8% of positive results among women with breast cancer were in highly penetrant genes other than BRCA1 and BRCA2. The yield in Lynch syndrome genes among breast cancer patients was 0.5% (17/3,315), higher than a published upper estimate of the prevalence of Lynch among the general population (0.2%). More than a quarter of patients with colon cancer tested positive for genes not considered to be classic colorectal cancer (CRC) genes. Over 11% of positive findings among women with endometrial cancer were in BRCA1 and BRCA2. A small number of patients whose personal and family histories were not suggestive of Li-Fraumeni syndrome were positive for pathogenic variants in the TP53 gene.

LaDuca et al (2014) reported on the clinical and molecular characteristics of 2,079 patients who underwent panel testing with Ambry’s BreastNext (n=874), OvaNext (n=222), ColoNext (n=557), or CancerNext (n=425). Most (94%) patients had a personal history of cancer or adenomatous polyps, and in 5% of cases, the proband was reported to be clinically unaffected. The positive and inconclusive rates for the panels were, respectively, 7.4% and 20% for BreastNext, 7.2% and 26% for OvaNext, 9.2% and 15% for ColoNext, and 9.6% and 24% for CancerNext.

Hereditary Breast and Ovarian Cancer

O’Leary et al (2017) reported on 1,085 cases with non-BRCA1 or BRCA2 breast cancer referred to a commercial laboratory that were found to have a pathogenic or likely pathogenic variant. The cases were divided into 3 groups based on the panel requested by the ordering physician: genes primarily associated with breast cancer (group A), genes associated with breast, gynecologic, and gastrointestinal cancer types (group B), and large comprehensive panels (group C). The proportion of positive findings in genes with breast management guidelines was inversely related to the size of the panel: 97.5% in group A, 63.6% in group B, and 50% in group C. Conversely, more positive findings and unexpected findings (there was no family history) were identified in actionable non breast cancer genes as the size of the panel increased. Rates of VUS also increased as the size of the panel increased, with 12.7% VUS in group A, 31.6% in group B, and 49.6% in group C.

Couch et al (2017) evaluated 21 genetic predisposition genes for breast cancer in a sample of 38,326 white women with breast cancer who received any one of a variety of genetic test panels (Ambry Genetics). The frequency of pathogenic variants was estimated at 10.2%. After the exclusion of BRCA1, BRCA2, and syndromic breast cancer genes (CDH1, PTEN, TP53), 5 additional genes with variants classified as pathogenic by ClinVar were associated with high or moderately increased risk of breast cancer (see Table 1). Notably, of the various panels included in this study, only the BRCA plus panel is limited to the set of genes (ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, PTEN) that were associated with breast cancer in women of European descent.

Table 1. Moderate-to-High Risk Non-BRCA1 and BRCA2, Nonsyndromic Genes Associated With Breast Cancer

<table>
<thead>
<tr>
<th>Gene</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>Risk Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>2.78</td>
<td>2.22 to 3.62</td>
<td>Moderate</td>
</tr>
<tr>
<td>BARD1</td>
<td>2.16</td>
<td>1.31 to 3.63</td>
<td>Moderate</td>
</tr>
<tr>
<td>CHEK2</td>
<td>1.48</td>
<td>1.31 to 1.67</td>
<td>Moderate</td>
</tr>
<tr>
<td>PALB2</td>
<td>7.46</td>
<td>5.12 to 11.19</td>
<td>High</td>
</tr>
</tbody>
</table>
Other studies have assessed the prevalence of pathogenic variants among patients with breast cancer who were referred for genetic testing, using a panel of 25 genes associated with inherited cancer predisposition (Myriad Genetics).

A study by Buys et al (2017) included over 35,000 women with breast cancer who were assessed with the Myriad 25-gene panel. Pathogenic variants were identified in 9.3% of the women tested. Nearly half of those variants were in the BRCA1 or BRCA2 genes. The remaining variants were found in other breast cancer genes, Lynch syndrome genes, and other panel genes. The VUS rate was 36.7%.

A similar study by Langer et al (2016) evaluated the frequency of pathogenic variants identified with the 25-gene panel (Myriad Genetics) in 3,088 patients with a personal history of ovarian cancer who were referred for testing. Pathogenic or likely pathogenic variants were identified in 419 (13.6%) patients, of whom 7 patients had variants in 2 different genes. Nearly all patients (99.2%) met National Comprehensive Cancer Network guidelines for hereditary breast and ovarian cancer testing (78.4%), Lynch syndrome testing (0.3%), or both (20.5%). Of the 419 patients with pathogenic or likely pathogenic variants, 277 (65%) were identified in BRCA1 or BRCA2, 33 (7.8%) in Lynch syndrome-associated genes (PMS2, MSH6, MLH1, MSH2), 26.8% in genes with a low-to-moderate increase in cancer risk (ATM, BRIP1, CHEK2, RAD51C, PALB2, NBN), and <1% each in 6 other genes. One or more VUS were reported in 1141 (36.9%) of patients.

Kurian et al (2017) evaluated the association between gene variants on the Myriad 25-gene panel in 95,561 women and documented risk of breast or ovarian cancer from provider-completed test requisition forms. Pathogenic variants were detected in 6,775 (7%) of the women. Multivariate regression models and case-control analysis estimated that 8 genes were associated with breast cancer with odds ratio (OR) from 2-fold (ATM) to 6-fold (BRCA1). Eleven genes were associated with ovarian cancer, with OR ranging from 2-fold (ATM) to 40-fold (STK11), but statistical significance was achieved for only 3 genes (BRCA1, BRCA2, RAD51C). The clinical significance of the increase in cancer risk for the other genes is uncertain. Out of the 25 genes tested on the panel, there was overlap of 3 genes (ATM, BRCA1, BRCA2) for the association of both breast or ovarian cancer, and not all genes on the panel were associated with risk for either cancer.

Colorectal Cancer

Pearlman et al (2021) reported on the prevalence of germline pathogenic variants among patients with CRC in the Ohio Colorectal Cancer Prevention Initiative. All 3,310 patients enrolled in the study underwent testing for mismatch repair deficiency, and patients meeting at least 1 clinical criterion (mismatch repair deficiency, CRC diagnosis at less than 50 years of age, multiple primary tumors [CRC or endometrial cancer], or first degree relative with CRC or endometrial cancer) underwent subsequent multigene panel testing. The specific multigene panel test used depended on the results of mismatch repair deficiency testing; patients with mismatch repair deficiency not explained by MLH1 hypermethylation (n=224) underwent testing with ColoSeq or BROCA panels, while patients with MLH1 hypermethylated tumors (n=99) and patients without mismatch repair deficiency (n=1,139) underwent testing with a myRisk panel. Panels tested for 25 to 66 cancer genes. Among the 1,462 patients who underwent multigene panel testing, 248 pathogenic or likely pathogenic variants were detected in 234 patients (16% of patients who underwent multigene panel testing, and 7.3% of the entire study population). One hundred forty two pathogenic variants were in mismatch repair deficiency genes, while 101 were in non-mismatch repair deficiency genes. If mismatch repair deficiency testing had been the only method used to screen for hereditary cancer syndromes, 38.6% (91 of 236) of patients with a pathogenic variant in a cancer susceptibility gene or constitutional hypermethylation would have been missed, including 6.3% (9 of 144) of those with Lynch syndrome. One hundred seventy-five patients (5.3% of the entire study population) had pathogenic variants in genes with...
Variances of uncertain significance were found in 422 patients who underwent multigene panel testing (28.9%).

In an industry-sponsored study, Cragun et al (2014) reported on the prevalence of clinically significant variants and VUS among patients who underwent ColoNext panel testing. For the period included in the study (March 2012 to March 2013), the ColoNext test included the MLH1, MSH2, MSH6, PMS2, EPCAM, BMPR1, SMAD4, STK11, APC, MSH4, CHEK2, TP53, PTEN, and CDK1 genes. Alterations were classified as follows: (1) pathogenic variant; (2) variant, likely pathogenic; (3) variant, unknown significance; (4) variant, likely benign; and (5) benign. Data were analyzed for 586 patients whose ColoNext testing results and associated clinical data were maintained in a database by Ambry Genetics. Sixty-one (10.4%) patients had genetic alterations consistent with pathogenic variants or likely pathogenic variants; after 8 patients with only CHEK2 or 1 MUTYH variant were removed, 42 (7.2%) patients were considered to have actionable variants. One hundred eighteen (20.1%) patients had at least 1 VUS, including 14 patients who had at least 1 VUS in addition to a pathologic variant. Of the 42 patients with a pathologic variant, most (30 [71%] patients) met National Comprehensive Cancer Network guidelines for syndrome-based testing, screening, or diagnosis, based on the available clinical and family history. The authors noted “The reality remains that syndrome based testing would have been sufficient to identify the majority of patients with deleterious variants. Consequently, the optimal and most cost-effective use of panel-based testing as a first-tier test versus a second-tier test (i.e. after syndrome-based testing is negative), remains to be determined.”

Pan-Cancer Panels
Rosenthal et al (2017) published an industry-sponsored study evaluating a 25-gene pan-cancer panel. The analysis included 252,223 consecutive individuals, most of whom (92.8%) met testing criteria for hereditary breast and ovarian cancer and/or Lynch syndrome. Pathogenic variants (n=17,340) were identified in 17,000 (6.7%) patients; the most common pathogenic variants were BRCA1 and BRCA2 (42.2%), other breast cancer genes (32.9%), Lynch syndrome genes (13.2%), and ovarian cancer genes (6.8%). Among individuals who met only hereditary breast and ovarian cancer or Lynch syndrome testing criteria, half of the pathogenic variants found were genes other than BRCA1 and BRCA2 or Lynch syndrome genes, respectively. The study was limited by reliance on providers for personal and family cancer histories and by uncertainty regarding the exact cancer risk spectrum for each gene included on the panel.

Section Summary: Clinically Valid
There is limited evidence on clinical validity for many of the genes in expanded panels. Most studies have been retrospective. These studies have reported on the frequency with which well-known cancer susceptibility variants are identified using large panels and variably have reported the VUS rate. The VUS rates increased in proportion with panel size, reaching nearly 50% for large gene panels. Although it may be possible to evaluate the clinical validity of some of the genes found on these panels, the clinical validity of expanded cancer susceptibility panels, which include variants associated with unknown or variable cancer risk, are of uncertain clinical validity.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.
The following criteria can be used to evaluate the clinical utility of cancer susceptibility panel testing:

- Is decision-making based on potential results of panel testing well-defined?
 - Do positive results on panel testing result in changes in cancer susceptibility that are clinically important?
 - Does this change in cancer susceptibility lead to changes in management that result in health outcome benefits for the patient being tested?
- Is the impact of ancillary information provided by panel testing well-defined?
 - What is the probability that ancillary information leads to further testing or management changes that may have either a positive or a negative impact on the patient being tested?

Identifying a person with a genetic variant that confers a high risk of developing cancer could lead to changes in clinical management and improve health outcomes. There are well-defined clinical guidelines on the management of patients who are identified as having high-risk hereditary cancer syndrome. Changes in clinical management could include modifications in cancer surveillance, specific risk-reducing measures (e.g., prophylactic surgery), and treatment guidance (e.g., avoidance of certain exposures). Also, other at-risk family members could be identified.

On the other hand, identifying variants that have intermediate or low penetrance is of limited clinical utility. Clinical management guidelines for patients found to have one of these variants are not well-defined. Also, there is a potential for harm, in that the diagnosis of an intermediate- or low-risk variant may lead to undue psychological stress and unnecessary prophylactic surgical intervention.

Idos et al (2018) conducted a prospective study that enrolled 2,000 patients who had been referred for genetic testing at 1 of 3 academic medical centers (see Table 2). Patients underwent differential diagnosis by a genetic clinician prior to cancer panel testing for 25 or 28 genes associated with breast or ovarian cancer, Lynch syndrome, and genes associated with gastric, colon, or pancreatic cancer. Results of the study are shown in Table 3. Twelve percent of the patients were found to have a pathogenic variant; 66% of these findings were anticipated by the genetic clinician and 34% were not anticipated. Most of the unanticipated results were in moderate to low penetrance genes. Thirty-four percent of the patients had a VUS and 53% of patients had benign results. Prophylactic surgery was performed more frequently in patients with a pathogenic variant (16%) compared to patients with a benign (2.4%) or unknown (2.3%) variant. Limitations in relevance and design and conduct are shown in Tables 4 and 5.

Information on the actions associated with low to moderate penetrance genes were not reported. One concern with large panels is the increase in VUS. Having a VUS did not increase distress or uncertainty or diminish a positive experience of the testing in this study, and there was no increase in prophylactic surgery in patients with a VUS. However, all patients had received genetic counseling at an academic medical center regarding the outcomes of testing and this study may not be representative of community practice. In addition, a threshold for testing of 2.5% on a risk prediction model is a lower threshold than what is typically recommended. Patients with a positive result were more likely to encourage relatives to undergo testing. Longer-term follow-up for clinical outcomes is ongoing.

<table>
<thead>
<tr>
<th>Table 2. Study Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Idos et al (2018)</td>
</tr>
</tbody>
</table>
Patients met genetic testing guidelines or had at least a 2.5% risk of cancer on a risk prediction model. Seventy-three percent had a personal history of cancer. Reasons for genetics referral included cancer diagnosis < 50 years of age, > 2 close relatives with cancer, > 1 family member with cancer at < 50 years of age, or history of multiple cancers.

Table 3. Study Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Initial N</th>
<th>Final N</th>
<th>Clinically Anticipated, n (%)</th>
<th>Test Results not Clinically Anticipated, n (%)</th>
<th>Outcome Pathogenic</th>
<th>VUS</th>
<th>Negative</th>
<th>p-value, Pathogenic vs VUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>2,000</td>
<td>160/242 (66)</td>
<td>82/142 (34)</td>
<td>Pathogenic 242 (12)</td>
<td>VUS 689 (34)</td>
<td>Negative 1,069 (53)</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Prophylactic surgery</td>
<td>62</td>
<td>30 (16.0)</td>
<td>12 (2.3)</td>
<td>Pathogenic 30 (16.0)</td>
<td>VUS 12 (2.3)</td>
<td>Negative 20 (4.2)</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Distress score (0 to 30), mean (SD)</td>
<td>1,248</td>
<td>6.1 (6.04)</td>
<td>2.1 (4.2)</td>
<td>Pathogenic 6.1 (6.04)</td>
<td>VUS 2.1 (4.2)</td>
<td>Negative 1.7 (3.5)</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Uncertainty (0 to 45), mean (SD)</td>
<td>1,223</td>
<td>11.4 (8.8)</td>
<td>7.4 (7.8)</td>
<td>Pathogenic 11.4 (8.8)</td>
<td>VUS 7.4 (7.8)</td>
<td>Negative 6.3 (7.1)</td>
<td><0.01</td>
<td></td>
</tr>
</tbody>
</table>

SD: standard deviation; VUS: variant of uncertain significance.

Table 4. Study Relevance Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idos et al (2018)</td>
<td>4. The population included patients down to 2.5% of risk on a risk prediction model.</td>
<td>1. The outcomes were patient-reported experience</td>
<td>1. Follow-up is continuing for clinical outcomes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

Table 5. Study Design and Conduct Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Selection</th>
<th>Blinding</th>
<th>Delivery of Test</th>
<th>Selective Reporting</th>
<th>Data Completeness</th>
<th>Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idos et al (2018)</td>
<td>1. Blinding not described</td>
<td>1. Surveys were completed by 69% of patients at 3 mo and 57% at 12 mo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.
Lumish et al (2017) evaluated the impact of hereditary breast and ovarian cancer gene panel testing in 232 patients who had undergone gene panel testing after discussion with a genetic counselor. From this sample, 129 patients had a personal history of cancer (11 with a pathogenic or likely pathogenic variant, 14 with a VUS, 104 with normal test results) and 103 had a family history of cancer (14 with a pathogenic or likely pathogenic variant, 20 with a VUS, 69 with normal test results). The greatest impact of test results was for the 14 patients with a family history of breast or ovarian cancer who received a positive (pathogenic or likely pathogenic) test result, leading to greater distress and more frequent screening in 13 patients and prophylactic surgery in 1. Positive test results for the 11 patients with a personal history of cancer influenced their decision about the type of surgery for 4 (36.4%) patients. For the 20 patients with a family history of cancer and a VUS result, distress increased to an intermediate level, and 7 (35%) patients reported that their test result would impact the decision to have additional screening.

Eliade et al (2017) evaluated the clinical actionability of a multi-gene panel in a cohort of 583 patients with a family history of breast or ovarian cancer. A pathogenic or likely pathogenic BRCA1 or BRCA2 variant was identified in 51 (9%) patients, and a pathogenic or likely pathogenic variant was identified in 10 other genes in the panel for 37 patients. The most frequently mutated genes were CHEK2 (n=12 [2%]), ATM (n=9 [1.5%]), and PALB2 (n=4 [0.6%]). The identification of a pathogenic/likely pathogenic variant in a high-risk gene or in 2 genes led to a change in surveillance or prophylactic surgery. In patients with a positive finding in a moderate-risk gene, breast magnetic resonance imaging was recommended, while surveillance according to family history was recommended in patients with a negative finding. There was no change in management in the 4 women with a positive finding in a low-risk gene (BRIP1, BARD1, RAD50). Individuals with a negative finding could not be reassured, given the possibility of a pathogenic or likely pathogenic variant in an as-yet-undiscovered gene.

Kurian et al (2014) evaluated the information from a next-generation sequencing (NGS) panel of 42 cancer-associated genes in women previously referred for clinical BRCA1 and BRCA2 testing after clinical evaluation of hereditary breast and ovarian cancer from 2002 to 2012. The authors aimed to assess concordance of the results of the panel with prior clinical sequencing, the prevalence of potentially clinically actionable results, and the downstream effects on cancer screening and risk reduction. Potentially actionable results were defined as pathogenic variants that cause recognized hereditary cancer syndromes or have a published association with a 2-fold or greater relative risk of breast cancer compared with average-risk women. In total, 198 women participated in the study. Of these, 174 had breast cancer and 57 carried 59 germline BRCA1 and BRCA2 variants. Of the women who tested negative for BRCA1 and BRCA2 variants (n=141), 16 had pathogenic variants in other genes (11.4%). Overall, a total of 428 VUS were identified in 39 genes, among 175 patients. Six women with variants in ATM, BLM, CDH1, NBN, and SLX4 were advised to consider annual breast magnetic resonance imaging because of an estimated doubling of breast cancer risk, and 6 with variants in CDH1, MLH1, and MUTYH were advised to consider frequent colonoscopy and/or endoscopic gastroduodenoscopy (once every 1 to 2 years) due to estimated increases in gastrointestinal cancer risk. One patient with an MLH1 variant consistent with Lynch syndrome underwent risk-reducing salpingo-oophorectomy and early colonoscopy. No clinical outcomes associated with the recommendations were reported.

Chain of Evidence

Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.
Because the clinical validity of cancer susceptibility panel testing for inherited cancer syndromes has not been established, a chain of evidence cannot be constructed.

Section Summary: Clinically Useful
Data are lacking for the clinical utility of multi-gene panels for inherited cancer susceptibility panels. There are management guidelines for syndromes with high penetrance, which have clinical utility in that they inform clinical decision making and result in the prevention of adverse health outcomes. Clinical management recommendations for the inherited conditions associated with low-to-moderate penetrance are not standardized, and the clinical utility of genetic testing for these variants is uncertain and could potentially lead to harm. Also, high VUS rates have been reported with the use of these panels.

Summary of Evidence
For individuals who have a personal and/or family history suggesting an inherited cancer syndrome who receive expanded gene panel testing, the evidence includes reports describing the diagnostic yield of expanded gene panels. Relevant outcomes are overall survival, disease-specific survival, and test validity. Studies of gene panel testing for genetic cancer risk assessment have reported primarily on the frequency with which variants are identified. The rates of variants of uncertain significance for gene panels are significant and increase in proportion with panel size, reaching nearly 50% for large gene panels. Variants included in these panels are associated with varying levels of risk of developing cancer. Published data on clinical utility are lacking, and it is unknown whether the use of these panels improves health outcomes. Only some variants included on panels are associated with a high risk of developing a well-defined cancer syndrome for which there are established clinical management guidelines. Many expanded panels include genetic variants considered to be of moderate or low penetrance, and clinical management recommendations for these genes are not well-defined. The lack of clinical management pathways for variants of uncertain clinical significance increases the potential for harm. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Supplemental Information
The purpose of the following information is to provide reference material. Inclusion does not imply endorsement or alignment with the evidence review conclusions.

Practice Guidelines and Position Statements
Guidelines or position statements will be considered for inclusion in ‘Supplemental Information’ if they were issued by, or jointly by, a US professional society, an international society with US representation, or National Institute for Health and Care Excellence (NICE). Priority will be given to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.

American Society of Clinical Oncology
In 2015, the American Society of Clinical Oncology (ASCO) issued a policy statement on genetic and genomic testing for cancer susceptibility. The update addressed the application of next-generation sequencing (NGS) and confirmed that panel testing may also identify variants in genes associated with moderate or low cancer risks, variants in high-penetrance genes that would not have been evaluated based on the presenting personal or family history, and variants of uncertain significance in a substantial proportion of patient cases. Further, the statement indicated there is little consensus as to which genes should be included on panels for cancer susceptibility testing.

In 2020, ASCO published a guideline on germline and somatic tumor testing in epithelial ovarian cancer. Based on a systematic review of evidence and expert panel input, ASCO recommended that women with epithelial ovarian cancer should be offered germline testing for BRCA1/2 and other specified ovarian susceptibility genes with a multi-gene panel. It was considered more practical to evaluate a minimum of the 10 genes that have been associated
with inherited risk of ovarian cancer in a panel in comparison to testing BRCA1 and BRCA2 alone.

National Comprehensive Cancer Network

Breast and Ovarian Cancers

National Comprehensive Cancer Network (NCCN) guidelines on genetic/familial high-risk assessment for breast, ovarian cancers, and/or pancreatic cancer (v.1.2022) include the following on multi-gene testing:

- "An individual's personal and/or family history may be explained by more than one inherited cancer syndrome; thus, phenotype-directed testing based on personal and family history through a tailored multi-gene panel test is often more efficient and cost-effective and increases the yield of detecting a pathogenic/likely pathogenic variant in a gene that will impact medical management for the individual or their at-risk family members.
- There may also be a role for multi-gene testing in individuals who have tested negative for a single syndrome, but whose personal or family history remains suggestive of an inherited susceptibility.
- Some individuals may carry a pathogenic/likely pathogenic germline variants in more than one cancer susceptibility gene..."

The NCCN defines a "tailored" multi-gene panel test as a "disease-focused multi-gene panel of clinically actionable cancer susceptibility genes, in contrast to large multi-gene panels of uncertain or unknown clinical relevance." The NCCN cautions that multi-gene panels may include moderate-risk genes that have limited data on the degree of cancer risk and no clear guidelines on risk management. As more genes are testing, the likelihood of finding variants of uncertain significance increases. Multi-gene panel testing also increases the likelihood of finding pathogenic/likely pathogenic variants without clear significance.

Colorectal Cancer

The NCCN guidelines on genetic/familial high-risk assessment for colorectal cancer (v.1.2021) state that "when more than one gene can explain an inherited cancer syndrome, multi-gene testing is more efficient than single-gene testing, or sequential single syndrome testing" and "there is also a role for multi-gene testing in individuals who have tested negative (indeterminate) for a single syndrome, but whose personal or family history remains strongly suggestive of an inherited susceptibility." However, the NCCN cautioned about the increased likelihood of finding variants of uncertain significance, which increases with the number of genes included in the panel, and that gene panels can include moderate-risk genes that may not be clinically actionable.

Collaborative Group of the Americas on Inherited Gastrointestinal Cancer

In 2020, the Collaborative Group of the Americas on Inherited Gastrointestinal Cancer published a position statement on multi-gene panel testing for patients with colorectal cancer and/or polyposis. Recommendations were based on the evidence, professional society recommendations endorsing testing of a given gene, and opinion of the expert panel. The group noted the variability in genes included in commercially available panels, and recommended that multi-gene panels include a minimum of 11 specific genes associated with defective mismatch repair (Lynch syndrome) and polyposis syndromes. Additional genes to be considered had low to moderately increased risk, had limited data of colorectal cancer risk, or causation for colorectal cancer was not proven.

U.S. Preventive Services Task Force Recommendations

The U.S. Preventive Services Task Force (2019) has recommended that primary care providers screen women with a personal or family history of breast, ovarian, tubal, or peritoneal cancer or who have an ancestry associated with BRCA1/2 gene mutations with an appropriate brief familial risk assessment tool. Women with positive screening results should receive genetic
counseling and if indicated after counseling, BRCA testing (grade B recommendation). The use of genetic cancer susceptibility panels was not specifically mentioned.

Medicare National Coverage
In January 2020, the Centers for Medicare and Medicaid Services (CMS) determined that NGS is covered for patients with breast or ovarian cancer when the diagnostic test is performed in a Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory AND the test has approval or clearance by the U.S. Food and Drug Administration (CAG-00450R).

CMS states that local Medicare carriers may determine coverage of NGS for management of the patient for any cancer diagnosis with a clinical indication and risk factor for germline testing of hereditary cancers when performed in a CLIA-certified laboratory.

Ongoing and Unpublished Clinical Trials
Some currently ongoing and unpublished trials that might influence this review are listed in Table 6.

Table 6. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

References

Documentation for Clinical Review

- No records required

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy.
The following codes are included below for informational purposes. Inclusion or exclusion of a code(s) does not constitute or imply member coverage or provider reimbursement policy. Policy Statements are intended to provide member coverage information and may include the use of some codes for clarity. The Policy Guidelines section may also provide additional information for how to interpret the Policy Statements and to provide coding guidance in some cases.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT®</td>
<td>0048U</td>
<td>Oncology (solid organ neoplasia), DNA, targeted sequencing of protein-coding exons of 468 cancer-associated genes, including interrogation for somatic mutations and microsatellite instability, matched with normal specimens, utilizing formalin-fixed paraffin-embedded tumor tissue, report of clinically significant mutation(s)</td>
</tr>
<tr>
<td></td>
<td>0101U</td>
<td>Hereditary colon cancer disorders (e.g., Lynch syndrome, PTEN hamartoma syndrome, Cowden syndrome, familial adenomatosis polyposis), genomic sequence analysis panel utilizing a combination of NGS, Sanger, MLPA, and array CGH, with mRNA analytics to resolve variants of unknown significance when indicated (15 genes [sequencing and deletion/duplication], EPCAM and GREM1 [deletion/duplication only])</td>
</tr>
<tr>
<td></td>
<td>0102U</td>
<td>Hereditary breast cancer-related disorders (e.g., hereditary breast cancer, hereditary ovarian cancer, hereditary endometrial cancer), genomic sequence analysis panel utilizing a combination of NGS, Sanger, MLPA, and array CGH, with mRNA analytics to resolve variants of unknown significance when indicated (17 genes [sequencing and deletion/duplication])</td>
</tr>
<tr>
<td></td>
<td>0103U</td>
<td>Hereditary ovarian cancer (e.g., hereditary ovarian cancer, hereditary endometrial cancer), genomic sequence analysis panel utilizing a combination of NGS, Sanger, MLPA, and array CGH, with mRNA analytics to resolve variants of unknown significance when indicated (24 genes [sequencing and deletion/duplication], EPCAM [deletion/duplication only])</td>
</tr>
<tr>
<td></td>
<td>0129U</td>
<td>Hereditary breast cancer-related disorders (e.g., hereditary breast cancer, hereditary ovarian cancer, hereditary endometrial cancer), genomic sequence analysis and deletion/duplication analysis panel (ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, PTEN, and TP53)</td>
</tr>
<tr>
<td></td>
<td>0130U</td>
<td>Hereditary colon cancer disorders (e.g., Lynch syndrome, PTEN hamartoma syndrome, Cowden syndrome, familial adenomatosis polyposis), targeted mRNA sequence analysis panel (APC, CDH1, CHEK2, MLH1, MSH2, MSH6, MUTYH, PMS2, PTEN, and TP53) (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>0131U</td>
<td>Hereditary breast cancer-related disorders (e.g., hereditary breast cancer, hereditary ovarian cancer, hereditary endometrial cancer), targeted mRNA sequence analysis panel (13 genes) (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>0132U</td>
<td>Hereditary ovarian cancer-related disorders (e.g., hereditary breast cancer, hereditary ovarian cancer, hereditary endometrial cancer), targeted mRNA sequence analysis panel (17 genes) (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>0133U</td>
<td>Hereditary prostate cancer-related disorders, targeted mRNA sequence analysis panel (11 genes) (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>0134U</td>
<td>Hereditary prostate cancer (e.g., hereditary breast cancer, hereditary ovarian cancer, hereditary colorectal cancer), targeted mRNA sequence analysis panel (18 genes) (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>Type</td>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>0135U</td>
<td>0135U</td>
<td>Hereditary gynecological cancer (e.g., hereditary breast and ovarian cancer, hereditary endometrial cancer, hereditary colorectal cancer), targeted mRNA sequence analysis panel (12 genes) (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>0136U</td>
<td>0136U</td>
<td>ATM (ataxia telangiectasia mutated) (e.g., ataxia telangiectasia) mRNA sequence analysis (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>0137U</td>
<td>0137U</td>
<td>PALB2 (partner and localizer of BRCA2) (e.g., breast and pancreatic cancer) mRNA sequence analysis (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>0138U</td>
<td>0138U</td>
<td>BRCA1 (BRCA1, DNA repair associated), BRCA2 (BRCA2, DNA repair associated) (e.g., hereditary breast and ovarian cancer) mRNA sequence analysis (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>0153U</td>
<td>0153U</td>
<td>Oncology (breast), mRNA, gene expression profiling by next-generation sequencing of 101 genes, utilizing formalin-fixed paraffin-embedded tissue, algorithm reported as a triple negative breast cancer clinical subtype(s) with information on immune cell involvement</td>
</tr>
<tr>
<td>81120</td>
<td>81120</td>
<td>IDH1 (isocitrate dehydrogenase 1 [NADP+], soluble) (e.g., glioma), common variants (e.g., R132H, R132C)</td>
</tr>
<tr>
<td>81121</td>
<td>81121</td>
<td>IDH2 (isocitrate dehydrogenase 2 [NADP+], mitochondrial) (e.g., glioma), common variants (e.g., R140W, R172M)</td>
</tr>
<tr>
<td>81163</td>
<td>81163</td>
<td>BRCA1 (BRCA1, DNA repair associated), BRCA2 (BRCA2, DNA repair associated) (e.g., hereditary breast and ovarian cancer) gene analysis; full sequence analysis</td>
</tr>
<tr>
<td>81164</td>
<td>81164</td>
<td>BRCA1 (BRCA1, DNA repair associated), BRCA2 (BRCA2, DNA repair associated) (e.g., hereditary breast and ovarian cancer) gene analysis; full duplication/deletion analysis (i.e., detection of large gene rearrangements)</td>
</tr>
<tr>
<td>81165</td>
<td>81165</td>
<td>BRCA1 (BRCA1, DNA repair associated) (e.g., hereditary breast and ovarian cancer) gene analysis; full sequence analysis</td>
</tr>
<tr>
<td>81166</td>
<td>81166</td>
<td>BRCA1 (BRCA1, DNA repair associated) (e.g., hereditary breast and ovarian cancer) gene analysis; full duplication/deletion analysis (i.e., detection of large gene rearrangements)</td>
</tr>
<tr>
<td>81167</td>
<td>81167</td>
<td>BRCA2 (BRCA2, DNA repair associated) (e.g., hereditary breast and ovarian cancer) gene analysis; full duplication/deletion analysis (i.e., detection of large gene rearrangements)</td>
</tr>
<tr>
<td>81403</td>
<td>81403</td>
<td>Molecular pathology procedure level 4 (Code revision effective 1/1/2021)</td>
</tr>
<tr>
<td>81404</td>
<td>81404</td>
<td>Molecular pathology procedure level 5 (Code revision effective 1/1/2021)</td>
</tr>
<tr>
<td>81405</td>
<td>81405</td>
<td>Molecular pathology procedure level 6 (Code revision effective 1/1/2021)</td>
</tr>
<tr>
<td>81406</td>
<td>81406</td>
<td>Molecular pathology procedure level 7 (Code revision effective 1/1/2021)</td>
</tr>
<tr>
<td>81407</td>
<td>81407</td>
<td>Molecular pathology procedure level 8</td>
</tr>
<tr>
<td>81408</td>
<td>81408</td>
<td>Molecular pathology procedure level 9</td>
</tr>
<tr>
<td>81432</td>
<td>81432</td>
<td>Hereditary breast cancer-related disorders (e.g., hereditary breast cancer, hereditary ovarian cancer, hereditary endometrial cancer); genomic sequence analysis panel, must include sequencing of at least 10 genes, always including BRCA1, BRCA2, CDH1, MLH1, MSH2, MSH6, PALB2, PTEN, STK11, and TP53</td>
</tr>
<tr>
<td>Type</td>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>81433</td>
<td>Hereditary breast cancer-related disorders (e.g., hereditary breast cancer, hereditary ovarian cancer, hereditary endometrial cancer); duplication/deletion analysis panel, must include analyses for BRCA1, BRCA2, MLH1, MSH2, and STK11</td>
</tr>
<tr>
<td></td>
<td>81435</td>
<td>Hereditary colon cancer disorders (e.g., Lynch syndrome, PTEN hamartoma syndrome, Cowden syndrome, familial adenomatosis polyposis); genomic sequence analysis panel, must include sequencing of at least 10 genes, including APC, BMPR1A, CDH1, MLH1, MSH2, MSH6, MUTYH, PTEN, SMAD4, and STK11</td>
</tr>
<tr>
<td></td>
<td>81436</td>
<td>Hereditary colon cancer disorders (e.g., Lynch syndrome, PTEN hamartoma syndrome, Cowden syndrome, familial adenomatosis polyposis); duplication/deletion analysis panel, must include analysis of at least 5 genes, including MLH1, MSH2, EPCAM, SMAD4, and STK11</td>
</tr>
<tr>
<td></td>
<td>81437</td>
<td>Hereditary neuroendocrine tumor disorders (e.g., medullary thyroid carcinoma, parathyroid carcinoma, malignant pheochromocytoma or paraganglioma); genomic sequence analysis panel, must include sequencing of at least 6 genes, including MAX, SDHB, SDHC, SDHD, TMEM127, and VHL</td>
</tr>
<tr>
<td></td>
<td>81438</td>
<td>Hereditary neuroendocrine tumor disorders (e.g., medullary thyroid carcinoma, parathyroid carcinoma, malignant pheochromocytoma or paraganglioma); duplication/deletion analysis panel, must include analyses for SDHB, SDHC, SDHD, and VHL</td>
</tr>
<tr>
<td></td>
<td>81445</td>
<td>Targeted genomic sequence analysis panel, solid organ neoplasm, DNA analysis, and RNA analysis when performed, 5-50 genes (e.g., ALK, BRAF, CIN2A, EGFR, ERBB2, KIT, KRAS, NRAS, MET, PDGFRA, PDGFRB, PGR, PIK3CA, PTEN, RET), interrogation for sequence variants and copy number variants or rearrangements, if performed</td>
</tr>
<tr>
<td></td>
<td>81450</td>
<td>Targeted genomic sequence analysis panel, hematolymphoid neoplasm or disorder, DNA analysis, and RNA analysis when performed, 5-50 genes (e.g., BRAF, CEBPA, DNMT3A, EZH2, FLT3, IDH1, IDH2, JAK2, KRAS, KIT, MLL, NRAS, NPM1, NOTCH1), interrogation for sequence variants, and copy number variants or rearrangements, or isoform expression or mRNA expression levels, if performed</td>
</tr>
<tr>
<td></td>
<td>81455</td>
<td>Targeted genomic sequence analysis panel, solid organ or hematolymphoid neoplasm, DNA analysis, and RNA analysis when performed, 51 or greater genes (e.g., ALK, BRAF, CIN2A, CEBPA, DNMT3A, EGFR, ERBB2, EZH2, FLT3, IDH1, IDH2, JAK2, KIT, KRAS, MLL, NPM1, NRAS, MET, NOTCH1, PDGFRA, PDGFRB, PGR, PIK3CA, PTEN, RET), interrogation for sequence variants and copy number variants or rearrangements, if performed</td>
</tr>
<tr>
<td></td>
<td>81479</td>
<td>Unlisted molecular pathology procedure</td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/27/2013</td>
<td>BCBSA Medical Policy adoption</td>
</tr>
<tr>
<td>01/30/2015</td>
<td>Coding update</td>
</tr>
<tr>
<td>06/30/2015</td>
<td>Coding update</td>
</tr>
<tr>
<td>02/01/2016</td>
<td>Coding update</td>
</tr>
</tbody>
</table>

Reproduction without authorization from Blue Shield of California is prohibited
Definitions of Decision Determinations

Medically Necessary: Services that are Medically Necessary include only those which have been established as safe and effective, are furnished under generally accepted professional standards to treat illness, injury or medical condition, and which, as determined by Blue Shield, are: (a) consistent with Blue Shield medical policy; (b) consistent with the symptoms or diagnosis; (c) not furnished primarily for the convenience of the patient, the attending Physician or other provider; (d) furnished at the most appropriate level which can be provided safely and effectively to the patient; and (e) not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of the Member’s illness, injury, or disease.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member's health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member’s eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department at (800) 541-6652, or the Transplant Case Management Department at (800) 637-2066 ext. 3507708 or visit the provider portal at www.blueshieldca.com/provider.
Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.
<table>
<thead>
<tr>
<th>BEFORE</th>
<th>AFTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic Cancer Susceptibility Panels Using Next-Generation Sequencing 2.04.93</td>
<td></td>
</tr>
<tr>
<td>Policy Statement: General genetic cancer susceptibility panel testing is considered investigational.</td>
<td></td>
</tr>
<tr>
<td>Unless approved in another policy, genetic cancer susceptibility panel testing (e.g., pan cancer or large panels) is considered investigational.</td>
<td></td>
</tr>
<tr>
<td>Multi-gene panel testing for hereditary cancers other than breast, ovarian and colorectal cancer (see Policy Guidelines) are considered investigational.</td>
<td></td>
</tr>
<tr>
<td>Policy Statement: General genetic cancer susceptibility panel testing is considered investigational including but not limited to screening or when using a broad panel.</td>
<td></td>
</tr>
<tr>
<td>Unless approved in another policy, genetic cancer susceptibility panel testing (e.g., pan cancer or large panels) is considered investigational.</td>
<td></td>
</tr>
<tr>
<td>Multi-gene panel testing for hereditary cancers other than breast, ovarian and colorectal cancer (see Policy Guidelines) are considered investigational.</td>
<td></td>
</tr>
</tbody>
</table>