8.03.01 Functional Neuromuscular Electrical Stimulation

Policy Statement

Neuromuscular stimulation is considered investigational as a technique to restore function following nerve damage or nerve injury. This includes its use in any of the following situations:

- As a technique to provide ambulation in patients with spinal cord injury
- To improve ambulation in patients with footdrop caused by congenital disorders (e.g., cerebral palsy) or nerve damage (e.g., poststroke, or in those with multiple sclerosis)
- To provide upper-extremity function in patients with nerve damage (e.g., spinal cord injury or poststroke)

Functional electrical stimulation devices for exercise in patients with spinal cord injury is considered investigational.

Policy Guidelines

There are no specific CPT codes for functional neuromuscular electrical stimulation devices and associated services. The associated training required for the use of a device would probably be coded as physical therapy visits, such as:

- **97760**: Orthotic(s) management and training (including assessment and fitting when not otherwise reported), upper extremity(ies), lower extremity(ies) and/or trunk, initial orthotic(s) encounter, each 15 minutes
- **97763**: Orthotic(s)/prosthetic(s) management and/or training, upper extremity(ies), lower extremity(ies), and/or trunk, subsequent orthotic(s)/prosthetic(s) encounter, each 15 minutes
- **97530**: Therapeutic activities, direct (one-on-one) patient contact (use of dynamic activities to improve functional performance), each 15 minutes

HCPCS code E0764 is specific to a functional neuromuscular stimulator, such as the Parastep, to be used in spinal cord injury patients as an aid in ambulation.

HCPCS code E0770 can be used for other types of functional neuromuscular stimulators such as the stimulators used in patients with footdrop.

Description

Functional electrical stimulation (FES) involves the use of an orthotic device or exercise equipment with microprocessor-controlled electrical muscular stimulation. These devices are being developed to restore function and improve health in patients with damaged or destroyed nerve pathways (e.g., spinal cord injury [SCI], stroke, multiple sclerosis, cerebral palsy).

Related Policies

- Microprocessor-Controlled Prostheses for the Lower Limb
- Myoelectric Prosthetic and Orthotic Components for the Upper Limb
- Powered Exoskeleton for Ambulation in Patients with Lower-Limb Disabilities

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the...
contract language will control. Please refer to the member's contract benefits in effect at the
time of service to determine coverage or non-coverage of these services as it applies to an
individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from
denying Food and Drug Administration (FDA)-approved technologies as investigational. In these
instances, plans may have to consider the coverage eligibility of FDA-approved technologies on
the basis of medical necessity alone.

Regulatory Status

A variety of FES devices have been cleared by the U.S. Food and Drug Administration (FDA) and
are available for home use. Table 1 provides examples of devices designed to improve hand
and foot function as well as cycle ergometers for home exercise. The date of the FDA clearance
is for the first 510(k) clearance identified for a marketed device. Many devices have additional
FDA clearances as the technology evolved, each in turn listing the most recent device as the
predicate.

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Device Type</th>
<th>Clearance</th>
<th>Date</th>
<th>Product Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freehand®</td>
<td>No longer manufactured</td>
<td>Hand stimulator</td>
<td>K022776</td>
<td>2001</td>
<td>GZC</td>
</tr>
<tr>
<td>NESS H200® (previously Handmaster)</td>
<td>Bioness</td>
<td>Hand stimulator</td>
<td>K050991</td>
<td>2005</td>
<td>GZI</td>
</tr>
<tr>
<td>MyndMove System</td>
<td>MyndTec</td>
<td>Hand stimulator</td>
<td>K170564</td>
<td>2017</td>
<td>GZI/IPF</td>
</tr>
<tr>
<td>ReGrasp</td>
<td>Rehabtronics</td>
<td>Hand stimulator</td>
<td>K153163</td>
<td>2016</td>
<td>GZI/IPF</td>
</tr>
<tr>
<td>WalkAide® System</td>
<td>Innovative Neurotronics (formerly NeuroMotion)</td>
<td>Foot drop stimulator</td>
<td>K052329</td>
<td>2005</td>
<td>GZI</td>
</tr>
<tr>
<td>ODFS® (Odstock Dropped Foot Stimulator)</td>
<td>Odstock Medical</td>
<td>Foot drop stimulator</td>
<td>K141812</td>
<td>2015</td>
<td>GZI</td>
</tr>
<tr>
<td>ODFS® Pace XL</td>
<td>Odstock Medical</td>
<td>Foot drop stimulator</td>
<td>K162718</td>
<td>2017</td>
<td>GZI</td>
</tr>
<tr>
<td>L300 Go</td>
<td>Bioness</td>
<td>Foot drop stimulator</td>
<td>K050036</td>
<td>2005</td>
<td>GZI</td>
</tr>
<tr>
<td>Foot Drop System</td>
<td>SHENZHEN XFT Medical</td>
<td>Foot drop stimulator</td>
<td>K171396</td>
<td>2018</td>
<td>GZI/IPF</td>
</tr>
<tr>
<td>MyGait® Stimulation System</td>
<td>Otto Bock HealthCare</td>
<td>Foot drop stimulator</td>
<td>K153163</td>
<td>2016</td>
<td>GZI/IPF</td>
</tr>
<tr>
<td>ERGYS (TTI Rehabilitation Gym)</td>
<td>Therapeutic Alliances</td>
<td>Leg cycle ergometer</td>
<td>K841112</td>
<td>1984</td>
<td>IPF</td>
</tr>
<tr>
<td>RT300</td>
<td>Restorative Therapies, Inc (RTI)</td>
<td>Cycle ergometer</td>
<td>K170132</td>
<td>2017</td>
<td>GZI</td>
</tr>
</tbody>
</table>

FDA: Food and Drug Administration.

To date, the Parastep® Ambulation System (Sigmedics, Northfield, IL) is the only noninvasive
functional walking neuromuscular stimulation device to receive premarket approval from the
FDA. The Parastep® device is approved to “enable appropriately selected skeletally mature
spinal cord injured patients (level C6-T12) to stand and attain limited ambulation and/or take
steps, with assistance if required, following a prescribed period of physical therapy training in
conjunction with rehabilitation management of spinal cord injury.”¹ FDA product code: MKD.
Rationale

Background

Functional Electrical Stimulation

FES is an approach to rehabilitation that applies low-level electrical current to stimulate functional movements in muscles affected by nerve damage. It focuses on the restoration of useful movements, like standing, stepping, pedaling for exercise, reaching, or grasping.

FES devices consist of an orthotic and a microprocessor-based electronic stimulator with one or more channels for delivery of individual pulses through surface or implanted electrodes connected to the neuromuscular system. Microprocessor programs activate the channels sequentially or in unison to stimulate peripheral nerves and trigger muscle contractions to produce functionally useful movements that allow patients to sit, stand, walk, cycle, or grasp. Functional neuromuscular stimulators are closed-loop systems that provide feedback information on muscle force and joint position, thus allowing constant modification of stimulation parameters, which are required for complex activities (e.g., walking). These systems are contrasted with open-loop systems, which are used for simple tasks (e.g., muscle strengthening alone); healthy individuals with intact neural control benefit the most from this technology.

Applications, described in more detail in the Literature Review section, include upper-extremity grasping function after spinal cord injury and stroke, lifting the front of the foot during ambulation in individuals with footdrop, ambulation and exercise for patients with spinal cord injury. Some devices are used primarily for rehabilitation rather than home use. This evidence review focuses on devices intended for home use.

Literature Review

Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life, and ability to function including benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of technology, 2 domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent 1 or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice. The following is a summary of the key literature to date.

Upper-Extremity Function After Spinal Cord Injury and Stroke

Clinical Context and Therapy Purpose

One application of functional electrical stimulation (FES) is to restore upper-extremity functions such as grasp-release, forearm pronation, and elbow extension in patients with stroke, or C5 and C6 tetraplegia (quadriplegia).

The question addressed in this evidence review is: Does FES for the upper extremity improve health outcomes in patients with spinal cord injury (SCI), stroke, or chronic upper-extremity paresis?
The following PICO was used to select literature to inform this review.

Patients
The relevant population of interest is patients with SCI or stroke with chronic upper-extremity paresis.

Interventions
The therapy being considered is FES. NeuroControl Corp. developed the Freehand System, an implantable upper-extremity neuroprosthesis, to improve the ability to grasp, hold, and release objects for patients with tetraplegia due to C5 or C6 SCI. NeuroControl is no longer in business, but FES centers in the United States and United Kingdom provide maintenance for implanted devices.

The NESS H200 (previously known as the Handmaster NMS I system) is an upper-extremity device that uses a forearm splint and surface electrodes. The device, controlled by a user-activated button, is intended to provide hand function (fine finger grasping, larger palmar grasping) for patients with C5 tetraplegia or stroke.

Other hand stimulators that have been cleared for marketing in the United States are:
- ReGrasp by Rehabtronic
- MyndMove by MyndTec. This device is currently being studied in a clinical trial for rehabilitation.

Patients with SCI or stroke with chronic upper-extremity paresis are actively managed by neurologists and physical therapists.

Comparators
The following practices are currently being used to make decisions about FES for upper-extremity paresis: function without FES.

Patients with SCI or stroke with chronic upper-extremity paresis are actively managed by neurologists and physical therapists.

Outcomes
The general outcomes of interest include the ability to grasp, hold, and lift objects, along with other selected activities of daily living (ADL).

Available literature indicates training and follow-up for 3 weeks to 2 months.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs.
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Studies with duplicative or overlapping populations were excluded.

Review of Evidence

FreeHand System

Much of the early published evidence assessing upper-extremity devices to restore function in patients with SCI is reported on experience with the Freehand System, an implantable device no longer marketed in the United States.2,3,4,5.
Handmaster

Studies with the first version of the NESS H200 (Handmaster), were reported in patients with upper-extremity paresis following stroke and SCI (see Tables 2 and 3).

Alon et al (2003) evaluated the Handmaster device in 7 subjects with C5 or C6 SCI who practiced using the device daily in an effort to regain the ability to grasp, hold, and release objects. All patients were observed 2 to 3 times during the week for 3 weeks, and they were evaluated on their ability to perform the following tasks: pick up a telephone, eat food with a fork, perform an individually selected ADL task, and perform 2 tasks relating to grasping, holding, and releasing certain items. At the end of the study, all 7 subjects successfully used the device for each required task. Improvements occurred in secondary measures of grip strength, finger linear motion, and Fugl-Meyer Assessment scores (the instrument assesses sensorimotor recovery after stroke).

Alon et al (2002), reporting on a case series of 29 patients, investigated whether the Handmaster system could improve select hand function in persons with chronic upper-extremity paresis following stroke. The main outcome measures were 3 ADL tasks: lifting a 2-handled pot, holding a bag while standing with a cane, and another ADL chosen by the patient. At the end of the 3-week study period, the percentage of successful trials compared with baseline were lifting pot, 93% versus 0%; lifting 600-gram weight, 100% versus 14%; and lifting bag, 93% versus 17%. All subjects performed their selected ADLs successfully and improved their Fugl-Meyer Assessment scores using the neuroprosthesis.

Snoek et al (2000) reported on use of the Handmaster NMS I, another upper-extremity device, for a series of 10 patients with cervical SCIs. After 2 months of training, performance on a defined set of tasks, and 1 or more tasks chosen by the patient was evaluated. In 6 patients, a stimulated grasp and release with either 1 or both grasp modes (key and palmar pinch) of the Handmaster was possible. Four patients could perform the set of tasks with but not without the Handmaster.

Table 2. Key Case Series Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Treatment</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alon et al (2003)</td>
<td>7 patients with C5 or C6 SCI</td>
<td>Handmaster NMS</td>
<td>3 weeks of training</td>
</tr>
<tr>
<td>Alon et al (2002)</td>
<td>29 patients with chronic upper-extremity paresis following stroke</td>
<td>Handmaster NMS</td>
<td>3 weeks of training</td>
</tr>
<tr>
<td>Snoek et al (2000)</td>
<td>10 patients with cervical SCI</td>
<td>Handmaster NMS I</td>
<td>2 months of training</td>
</tr>
</tbody>
</table>

SCI: spinal cord injury

Table 3. Key Case Series Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Timing</th>
<th>Task 1</th>
<th>Task 2</th>
<th>Task 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alon et al (2003)</td>
<td>Post-training</td>
<td>Pick up a telephone</td>
<td>Eat with a fork</td>
<td>Individually selected ADL</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>14%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post-training</td>
<td>93%</td>
<td>100%</td>
<td>93%</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Post-training</td>
<td>60%</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

ADL: activities of daily living; NA: not applicable.
Section Summary: Upper-Extremity Function After Spinal Cord Injury and Stroke
The evidence on FES for the upper limbs in patients with SCI or stroke includes a limited number of small case series. Interpretation of the evidence for upper-extremity neuroprostheses for these populations is limited by the small number of patients studied and lack of data demonstrating its utility outside the investigational (study) setting.

Functional Electrical Stimulation for Chronic Foot Drop
Clinical Context and Therapy Purpose
Other FES devices have been developed to provide FES for patients with foot drop. Foot drop is weakness of the foot and ankle that causes reduced dorsiflexion and difficulty with ambulation. It can have various causes such as cerebral palsy, stroke, or multiple sclerosis (MS).

FES of the peroneal nerve has been suggested for these patients as an aid in raising the toes during the swing phase of ambulation.

The question addressed in this evidence review is: Does FES improve the net health outcome in patients with foot drop?

The following PICO was used to select literature to inform this review.

Patients
The relevant population of interest is patients with foot drop due to stroke, MS, or cerebral palsy.

Interventions
The therapy being considered is FES. With these devices, a pressure sensor detects heel-off and initial contact during walking. A signal is then sent to the stimulation cuff, initiating or pausing the stimulation of the peroneal nerve, which activates the foot dorsiflexors. Examples of such devices used for treatment of foot drop are:

- WalkAide by Innovative Neurotronics (formerly NeuroMotion),
- L300 Go by Bioness
- MyGait by Otto Bock
- OFDS (Odstock Foot Drop Stimulator) and ODFS Pace XL by Odstock.

An implantable peroneal nerve stimulator system (ActiGait®) is being developed by Otto Bock in Europe.

Patients with foot drop are actively managed by neurologists and physical therapists.

Comparators
The following therapies are currently being used to make decisions about foot drop: foot/ankle orthoses.

Patients with foot drop are actively managed by neurologists and physical therapists.

Outcomes
Ability to walk is the primary outcome of interest. There are established measures of walking, mobility and quality of life. These include:

- 10-meter walk test (10MWT): Assesses the time it takes to walk 10 meters
- 6-minute walk test (6MWT): Assesses the distance walked in 6 minutes
- Timed up-and-go: assesses the time required to get up from a chair and take a step
- Stroke Impact Scale

Based on available literature, follow-up would ideally be 6 months to 1 year.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs.

In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.

To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.

Studies with duplicative or overlapping populations were excluded.

Review of Evidence

Stroke

Two multicenter RCTs were identified on FES for dropped foot (see Tables 4 and 5). FES with a dropped foot stimulator (WalkAide) was compared with an ankle-foot orthosis (AFO) in a 2014 industry-sponsored multicenter non-inferiority trial (NCT01087957) that included 495 Medicare-eligible individuals who were at least 6 months poststroke. A total of 399 individuals completed the 6-month study. Primary outcome measures were the 10MWT, a composite measure of daily function, and device-related serious adverse events. Seven secondary outcome measures assessed function and quality of life. The intention-to-treat analysis found that both groups improved walking performance over the 6 months, and the FES device was found noninferior to the AFO for the primary outcome measures. Only the WalkAide group showed significant improvements from baseline to 6 months on several secondary outcome measures, but there were no statistically significant between-group differences for any outcome.

The Functional Ambulation: Standard Treatment vs. Electronic Stimulation Therapy (FASTEST) Trial in Chronic Post-Stroke Subjects With Foot Drop (NCT01138995) was a 2013 industry-sponsored, single-blinded, multicenter trial that randomized 197 stroke patients to 30 weeks of a dropped foot stimulator (NESS L300) or a conventional AFO. The AFO group received transcutaneous electrical nerve stimulation at each physical therapy visit during the first 2 weeks to provide a sensory control for stimulation of the peroneal nerve received by the NESS L300 group.

Evaluation by physical therapists blinded to group assignment found that both groups improved gait speed and other secondary outcome measures over time, with a similar improvement in the 2 groups. There were no between-group differences in the number of steps per day at home, which was measured by an activity monitor over a week. User satisfaction was higher with the foot drop stimulator.

O-Dell et al (2014) reported on a secondary analysis of data from the FASTEST study. Comfortable gait speed was assessed in the 99 individuals from the NESS L300 group at 6, 12, 30, 36, and 42 weeks, with and without the use of the foot drop stimulator. A responder was defined as one achieving a minimal clinically important difference of 0.1 m/s on the 10MWT or advancing by at least 1 Perry Ambulation Category (which measures functional walking ability in the home or community). Noncompleters were classified as nonresponders. Seventy percent of participants completed the assessments at 42 weeks, and 67% of participants were classified as responders. Of the 32 participants classified as nonresponders, 2 were nonresponders, and 30 were noncompleters. The percentage of patients in the conventional AFO group classified as responders at 30 weeks was not reported. There were 160 adverse events, of which 92% were classified as mild. Fifty percent of the adverse events were related to reversible skin issues, and 27% were falls.
Table 4. Key RCT Characteristics

<table>
<thead>
<tr>
<th>Trial</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Interventions</th>
<th></th>
<th>Active</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bethoux et al (2014)</td>
<td>US</td>
<td>29</td>
<td>2010-2013</td>
<td>495 Medicare-eligible individuals who were at least 6 months poststroke</td>
<td>6 months with WalkAide</td>
<td></td>
<td>6 months with conventional AFO</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Key RCT Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Improvement in 10MWT (m/s)</th>
<th>Daily Function</th>
<th>Improvement in 6MWT (m)</th>
<th>Functional Mobility</th>
<th>Device safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bethoux et al (2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WalkAide</td>
<td>0.186</td>
<td>5.0</td>
<td>33.1</td>
<td>2.2</td>
<td>0</td>
</tr>
<tr>
<td>AFO</td>
<td>0.195</td>
<td>3.9</td>
<td>18.0</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>P-value non-inferiority</td>
<td><0.01</td>
<td><0.01</td>
<td>0.17</td>
<td>0.17</td>
<td><0.01</td>
</tr>
<tr>
<td>Kluding et al (2013)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FASTEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L300</td>
<td>0.14±0.16</td>
<td>7.06±13.79</td>
<td>40.9±62.1</td>
<td>−5.93 (13.06)</td>
<td></td>
</tr>
<tr>
<td>AFO</td>
<td>0.15±0.14</td>
<td>5.83±13.26</td>
<td>48.6±51.1</td>
<td>−4.38 (21.37)</td>
<td></td>
</tr>
<tr>
<td>P-value</td>
<td>0.75</td>
<td>.52</td>
<td>.34</td>
<td>.54</td>
<td></td>
</tr>
</tbody>
</table>

Limitations in study design and conduct are shown in Table 6. The primary limitation for both studies was unequal loss to follow-up, with higher loss to follow-up in the FES group. Inability to tolerate the electrical stimulation has been noted in some studies.

Table 6. Study Design and Conduct Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocation</th>
<th>Blinding</th>
<th>Selective Reporting</th>
<th>Data Completeness</th>
<th>Power</th>
<th>Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bethoux et al (2014)</td>
<td></td>
<td></td>
<td></td>
<td>1. 19% loss to follow-up with a higher loss to follow-up in the Walk-Aide discontinuing the study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kluding et al (2013)</td>
<td></td>
<td></td>
<td></td>
<td>1. 18% loss to follow-up with a higher loss to follow-up in the L300 group</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

d Data Completeness key: 1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).
e Power key: 1. Power calculations not reported; 2. Power not calculated for primary outcome; 3. Power not
Longitudinal Cohort Study

Berenpas et al (2019) compared the effectiveness of implanted FES versus AFO in helping stroke patients with foot drop avoid obstacles while walking (“gait adaptability”). Two cohorts were studied: the first (n = 10) were followed for 26 weeks; the second (n = 12) were followed for 52 weeks. All study participants had experienced stroke more than 6 months prior and regularly used an AFO. A within-subjects repeated measures design was used. Gait adaptability was tested by having participants walk on a treadmill while obstacles were suddenly dropped in front of the paretic leg. Before implantation of the device, participants were tested using only the AFO (at 2 or 3 km/h). Patients were then implanted with a 4-channel peroneal nerve stimulator (ActiGait). Testing was then conducted with FES and with AFO at 2 weeks post implantation, then at 8 weeks, 26 weeks, and, for the second cohort, 52 weeks. Available response time (ART) was calculated “as the time between obstacle release and the moment the toe would have crossed the front edge of the obstacle in the case of an unaltered step.” ART was stratified into 3 categories based on at what point in the gait cycle the obstacle was dropped: 450-600 ms (mid stance), 300-450 ms (late stance/early swing), and 150-300 ms (mid swing). Results showed FES success rates were an average of 4.7% higher than with AFO (55.4% vs. 50.7%; P = .03). Significant differences were seen between the 3 ARTs (P < .001), with higher success rates with longer ARTs. The individual results ranged widely in differences between devices—at 26 weeks they ranged from -29% to 85%. The small sample size and absence of control group limit the study’s generalizability, but larger controlled studies would be difficult given the requirements of the intervention.

Multiple Sclerosis
Randomized Controlled Trials

Renfrew et al (2019) compared clinical effectiveness of FES versus AFO in their multicenter randomized trial. The study took place over 12 months and included 85 treatment-naive patients with MS who had had foot drop for more than 3 months. The patients were randomized to receive either an Odstock Dropped Foot Stimulator (n = 42) or AFO (n = 43). By 12 months, 32 patients (38%) had dropped out of the study. Outcome measurements were taken at baseline, 3, 6, and 12 months (except the Psychological Impact Score, which was measured only at 12 months). The primary outcome measure was the 5-minute self-selected walk test in which participants walked at their preferred pace around a 9.5-m elliptical course for 5 minutes and total distance was recorded. Other outcomes included the Timed 25 Foot Walk Test, Multiple Sclerosis Impact Scale-29 (higher scores indicate a greater impact on life), and the Activities-specific Balance and Confidence Scale (higher score indicates more confidence). Results are shown in Table 8. Also measured were orthotic effects and oxygen cost of walking. Clinically significant orthotic and therapeutic effects were deemed an observed increase in walking speed of ≥ 0.05 m/s. The FES group saw a clinically significant ongoing orthotic effect for both walk tests at 3, 6, and 12 months, but the AFO group did not. For total orthotic effect at 12 months, the AFO results for the 5-minute self-selected walk test were clinically significant, but the FES were not. Although both devices improved walking speed at 12 months, the differences in their effects were not significant.

Two publications from 1 RCT were identified on use of a dropped foot stimulator in patients with MS (see Tables 7 and 8). Barrett et al (2009) assessed FES to improve walking performance in patients with MS. Fifty-three patients with secondary progressive MS and unilateral dropped foot were randomized to an 18-week program of an Odstock Dropped Foot Stimulator device or a home exercise program. Patients in the stimulator group were encouraged to wear the device most of the day, switching it on initially for short walks and increasing daily for 2 weeks, after which they could use the device without restriction. Subjects in the control group were taught a series of exercises tailored to the individual to be done twice daily. Six patients in the FES group and 3 in the exercise group dropped out, leaving 20 in the FES group and 24 in the exercise
group. The primary outcome measure was the 10MWT. At 18 weeks, the exercise group walked significantly faster than the FES group ($P = 0.028$).

A 2010 publication by the same investigators reported on the impact of the treatment on ADL. Results of 53 patients from the trial previously described were reported, using the Canadian Occupational Performance Measure. The Canadian Occupational Performance Measure is a validated semi-structured interview (higher scores indicate improvement) originally designed to assist occupational therapy interventions. The interviews at baseline identified 265 problems of which 260 activities were related to walking and mobility. Subjective evaluation at 18 weeks showed greater improvements in performance and satisfaction scores in the FES group (35% of the identified problems increased by a score of ≥2) than in the exercise group (17% of problems increased by a score of ≥2). The median satisfaction rating improved from 2.2 to 4.0 in the FES group and remained stable (2.6 to 2.4) in the exercise group. The median number of falls recorded per patient over the 18-week study was 5 in the FES group and 18 in the exercise group. About 70% of the falls occurred while not using the FES device or an AFO.

Table 7. Summary of Key RCT Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Countries</th>
<th>Sites</th>
<th>Participants</th>
<th>Interventions</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renfrew et al (2019)</td>
<td>Scotland</td>
<td>7</td>
<td>85 treatment-naive patients with MS and >3 of foot drop</td>
<td>12 months of FES; measured at baseline, 3, 6, 12 mo.; gradually increased device wear over first 6 wk</td>
<td>Ankle-foot orthosis</td>
</tr>
<tr>
<td>Barrett et al (2009)</td>
<td>EU</td>
<td>1</td>
<td>53 patients with unilateral dropped foot</td>
<td>18 weeks of FES</td>
<td>Twice daily exercises that were tailored to the patient</td>
</tr>
</tbody>
</table>

FES: functional electrical stimulation; RCT: randomized controlled trial.

Table 8. Summary of Key RCT Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Walking Pace, m/s</th>
<th>Daily Function</th>
<th>Walking Distance, m</th>
<th>Functional Mobility</th>
<th>Device Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>FES</td>
<td>25 ft WT, mean (SD)a</td>
<td>MSIS-29 (physical), mean, SD</td>
<td>NR</td>
<td>ABC, mean (SD)</td>
<td>NR</td>
</tr>
<tr>
<td>AFO</td>
<td>0.73 (0.26)</td>
<td>34.2 (17.4)</td>
<td>NR</td>
<td>52.2 (23.5)</td>
<td>NR</td>
</tr>
<tr>
<td>P-value</td>
<td>0.043</td>
<td>.836</td>
<td>NR</td>
<td>.378</td>
<td>NR</td>
</tr>
<tr>
<td>Barrett et al (2009)</td>
<td>10MWT, mean (SD)</td>
<td>Physiologic Cost Index</td>
<td>3MWT, mean (SD)</td>
<td>Canadian Occupational Performance Measure</td>
<td>Falls</td>
</tr>
<tr>
<td>Esnouf et al (2010)</td>
<td>0.74 (0.026)</td>
<td>0.69 (0.041)</td>
<td>124 (8.5)</td>
<td>35%</td>
<td>5</td>
</tr>
<tr>
<td>(N=44)</td>
<td>0.82 (0.024)</td>
<td>0.70 (0.037)</td>
<td>112 (7.9)</td>
<td>17%</td>
<td>18</td>
</tr>
<tr>
<td>P-value</td>
<td>.028</td>
<td>.81</td>
<td>.334</td>
<td><.05</td>
<td>.036</td>
</tr>
</tbody>
</table>

25ftWT: 25-foot walk test; 3MWT: 3-minute walk test; 6MWT: 5minSSWT: 5-minute self-selected walk test; 6-minute walk test; 10MWT: 10-meter walk test; ABC: activities and balance confidence scale; AFO: ankle-foot orthosis; FES: functional electrical stimulation; mo: month(s); MSIS-29 (physical) Multiple Sclerosis Impact
8.03.01 Functional Neuromuscular Electrical Stimulation
Page 11 of 25

Scale physical subscale; m/s: meters per second; SD: standard deviation; RCT: randomized controlled trial;.

a At 12 months without use of FES/AFO.

Limitations in relevance and design and conduct are denoted in Tables 9 and 10. In Barrett et al (2009), power calculations were based on the 10MWT measure only and indicated that 25 subjects would be required in each group, patients were highly selected, clinical assessors also provided treatment (compromising blinding), and the validity and reliability of the 3-minute walk test had not been confirmed (fatigue prevented use of the validated 6MWT). In addition, subjects in the exercise group were told they would receive a stimulator at the end of the trial, which may have biased exercise adherence and retention in the trial.

Table 9. Study Relevance Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Populationa</th>
<th>Interventionb</th>
<th>Comparatorc</th>
<th>Outcomesd</th>
<th>Follow-Up e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renfrew et al</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrett et al</td>
<td></td>
<td>4. Patients were highly selected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2009)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esnouf et al</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.
a Population key: 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.
b Intervention key: 1. Not clearly defined; 2. Version used unclear; 3. Delivery not similar intensity as comparator; 4. Not the intervention of interest.
c Comparator key: 1. Not clearly defined; 2. Not standard or optimal; 3. Delivery not similar intensity as intervention; 4. Not delivered effectively.
d Outcomes key: 1. Key health outcomes not addressed; 2. Physiologic measures, not validated surrogates; 3. No CONSORT reporting of harms; 4. Not establish and validated measurements; 5. Clinical significant difference not prespecified; 6. Clinical significant difference not supported.
e Follow-Up key: 1. Not sufficient duration for benefit; 2. Not sufficient duration for harms.

Table 10. Limitations in Study Design and Conduct

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocationa</th>
<th>Blindingb</th>
<th>Selective Reportingc</th>
<th>Data Completenessd</th>
<th>Powere</th>
<th>Statistical f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renfrew et al</td>
<td></td>
<td>1, 2, 3. No blinding employed</td>
<td></td>
<td></td>
<td>3 Confidence intervals not reported</td>
<td></td>
</tr>
<tr>
<td>(2019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrett et al</td>
<td></td>
<td>2, 3 Blinding was assessed by the treating physician</td>
<td></td>
<td></td>
<td>2. Loss to follow-up resulted in insufficient power</td>
<td></td>
</tr>
<tr>
<td>(2009)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esnouf et al</td>
<td></td>
<td></td>
<td></td>
<td>6. Not intention-to-treat analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.
d Data Completeness key: 1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).
e Power key: 1. Power calculations not reported; 2. Power not calculated for primary outcome; 3. Power not based on clinically important difference.
f Statistical key: 1. Analysis is not appropriate for outcome type: (a) continuous; (b) binary; (c) time to event; 2. Analysis is not appropriate for multiple observations per patient; 3. Confidence intervals and/or p values not reported; 4. Comparative treatment effects not calculated.
Cerebral Palsy

A systematic review was identified on use of a dropped foot stimulator for children with cerebral palsy (see Table 11).

Cauraugh et al (2010) conducted a systematic review and meta-analysis of 17 studies on FES and gait in children with cerebral palsy (see Table 11). Fourteen studies used a pretest-posttest that included a within-subjects design. A total of 238 participants had FES. Included were studies on acute FES, FES, and therapeutic FES (continuous subthreshold stimulation). Five studies examined FES, 1 of which examined percutaneous FES. Impairment was assessed by 3 outcome measures: range of motion, torque/movement, and strength/force. Activity limitations were assessed by 6 outcome measures: gross motor functions, gait parameters, hopping on 1 foot, 6MWT, Leg Ability Index, and Gillette Gait Index. Moderate effect sizes were found for impairment (0.616) and activity limitations (0.635). Studies selected for the review lacked blinding and were heterogeneous for outcome measures. Reviewers did not report whether any study used a commercially available device.

Section Summary: Functional Electrical Stimulation for Chronic Foot Drop

For chronic poststroke foot drop, 2 RCTs comparing FES with a standard AFO showed improved patient satisfaction with FES but no significant differences between groups in objective measures such as walking. A longitudinal cohort study assessed patients’ ability to avoid obstacles while walking on a treadmill using FES versus AFO. Although the FES group averaged a 4.7% higher rate of avoidance, the individual results between devices ranged widely. One RCT with 53 subjects examining neuromuscular stimulation for foot drop in patients with MS showed a reduction in falls and improved patient satisfaction compared with an exercise program but did not demonstrate a clinically significant benefit in walking speed. Another RCT showed that at 12 months, both FES and AFO had improved walking speed, but the difference in improvement between the 2 devices was not significant. A reduction in falls is an important health outcome. However, it was not a primary study outcome and should be confirmed in a larger number of patients. The literature on FES in children with cerebral palsy includes a systematic review of small studies with within-subject designs. Further study in a larger number of subjects is needed to permit conclusions on the effect of the technology on health outcomes.

Ambulation in Patients With Spinal Cord Injury

Clinical Context and Therapy Purpose

Another application of FES is to provide patients with SCI the ability to stand and walk. Using percutaneous stimulation, the device delivers trains of electrical pulses to trigger action potentials at selected nerves at the quadriceps (for knee extension), the common peroneal nerve (for hip flexion), and the paraspinals and gluteals (for trunk stability). Patients use a walker or elbow-support crutches for further support. The electric impulses are controlled by a computer microchip attached to the patient’s belt, which synchronizes and distributes the signals. In addition, there is a finger-controlled switch that permits patient activation of the stepping.

Other devices include a reciprocating gait orthosis with electrical stimulation. The orthosis used is a cumbersome hip-knee-ankle-foot device linked together with a cable at the hip joint. The use of this device

Physiologic outcomes (i.e., conditioning, oxygen uptake) have also been reported, but they are intermediate, short-term outcomes.

Based on available literature, longer-term outcomes would require follow-up of at least 18 months.

Study Selection Criteria

Methodologically credible studies were selected using the following principles:

- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs.
In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies. To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought. Studies with duplicative or overlapping populations were excluded.

Review of Evidence

The evidence on FES for ambulation is shown in Table 11. Chaplin (1996) reported on the largest study, which was on ambulation outcomes using the Parastep 1 and included 91 patients. Of these 91 patients, 84 (92%) were able to take steps, and 31 (34%) were able eventually to ambulate without assistance from another person. Duration of use was not reported. Other studies on the Parastep device include a series from the same group of investigators, which focused on different outcomes in the same group of 13 to 16 patients.

Guest et al (1997) reported on the ambulation performance of 13 men and 3 with motor complete spinal injury. The group’s mean peak distance walked was 334 meters, but individual studies varied widely. The mean peak duration of walking was 56 minutes, again with wide variability. Anthropomorphic measurements were taken at various anatomic locations. Increases in thigh and calf girth, thigh cross-sectional area, and calculated lean tissue were all statistically significant. The authors emphasized that the device was not intended as an alternative to a wheelchair, and thus other factors such as improved physical and mental well-being should be considered when deciding whether to use the system. Graupe and Kohn (1998) noted the same point in a review article.

Brissot et al (2000) found that 13 of 15 patients evaluated in a case series achieved independent ambulation. Five of the 13 patients continued using the device for physical fitness at home, but none used it for ambulation. Sykes et al (1996) found low use of a reciprocating gait orthosis device with or without stimulation over an 18-month period, and Davis et al (2001) found mixed usability/preference scale results for ambulation, standing, and transfers with a surgically implanted neuroprosthesis in 12 patients followed for 12 months. The effects of a surgically implanted neuroprosthesis on exercise, standing, transfers, and quality of life were also reported in 2012. The device used in both studies was not commercially available at that time. Several publications reported on physiologic responses to use of the Parastep device. Jacobs et al (1997) found a 25% increase in time to fatigue and a 15% increase in peak oxygen uptake, consistent with an exercise training effect. Nash et al (1997) reported no relation between use of the Parastep device and bone mineral density, although the interval between measurements (12 weeks) and the precision of the testing device might have limited the ability to detect a difference. Nash et al (1997) reported that use of the Parastep device was associated with an increase in arterial inflow volume to the common femoral artery, perhaps related to the overall conditioning response to the Parastep.

Table 11. Key Case Series

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Ambulation n (%)</th>
<th>Distance walked</th>
<th>Physical Fitness</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaplin et al (1996)</td>
<td>91 adults with SCI</td>
<td>31 (34%) could ambulate without assistance</td>
<td></td>
<td>84 (92%) could take some steps</td>
<td></td>
</tr>
<tr>
<td>Guest et al (1997)</td>
<td>16 adults with SCI</td>
<td></td>
<td>334 meters</td>
<td>Improvements in the leg</td>
<td></td>
</tr>
<tr>
<td>Brissot et al (2000)</td>
<td>15 adults with SCI</td>
<td>13 (87%) patients achieved independent ambulation</td>
<td>5 used the device for physical fitness</td>
<td>No patient used the device for ambulation at home</td>
<td></td>
</tr>
</tbody>
</table>

SCI: spinal cord injury.
Section Summary: Ambulation in Patients With Spinal Cord Injury

The evidence on functional FES for standing and walking in patients with SCI consists of case series. Case series are considered adequate for this condition because there is no chance for ambulation in patients with SCI between segments T4 to T12. As stated by various authors, these systems are not designed as alternatives to a wheelchair and offer, at best, limited, short-term ambulation. Some studies have reported improvements in intermediate outcomes, but improvement in health outcomes (e.g., ability to perform ADLs) have not been demonstrated. Finally, evaluations of these devices were performed immediately after initial training or during limited study period durations. There are no data in which patients remained compliant and committed with long-term use.

Functional Electrical Stimulation Exercise Equipment for Spinal Cord Injuries

Clinical Context and Therapy Purpose

The U.S. Department of Health and Human Services Office of Disease Prevention and Health Promotion recommends 2 days per week of muscle strengthening for both healthy adults and adults with disabilities, and at least 150 minutes to 300 minutes (5 hours) of moderate-intensity aerobic activity per week or 75 minutes to 150 minutes of vigorous aerobic activity. In patients with SCI, inactivity due to injury or barriers to exercise can lead to multiple degenerative changes that include muscle atrophy, bone mass loss and osteoporosis, and reduction in cardiopulmonary function. Other adverse effects of inactivity that are common with SCI include muscle spasms and weight gain, which may predispose individuals to metabolic syndrome, type 2 diabetes, and their associated health problems.

FES cycle ergometers are available in rehabilitation facilities. An ergometer is a device that measures work performed by exercising. When the term “ergometer” is used in the context of FES, it refers to exercise equipment that measures both position and speed and stimulates muscles in a prescribed sequence to provide coordinated movement (e.g., cycling) of the paralyzed limb. The devices can provide increasing resistance as work capacity increases, and reduce stimulation when fatigue is detected (e.g., a speed of cycling below 35 rpm). Some models of FES cycle ergometers have been designed for home exercise in individuals with SCI and are the focus of this evidence review.

The proposed benefit of FES exercise equipment is to counteract the health consequences of paralyzed limbs and include:

- Prevention of muscle atrophy
- Reduction of muscle spasms
- Improvement of circulation
- Improvement in range of motion
- Improvement in cardiopulmonary function
- Reduction in pressure sore frequency
- Improvements in bowel and bladder function
- Decreased incidence of urinary tract infections

Hunt et al (2012) conducted a systematic review of the efficiency of FES cycling. They recommended that future work address factors that limited cycling performance including the crude recruitment of muscle groups, non-optimal timing of muscle activation, lack of synergistic and antagonistic joint control, and non-physiologic recruitment of muscle fibers.

The question addressed in this evidence review is: Does FES improve the net health outcome in individuals with lower extremity paresis? Three specific issues will be addressed:

1. Are there demonstrated health benefits of FES cycle ergometers in patients with SCI?
2. Do the different devices provide similar health benefits?
3. What levels of compliance are needed to obtain a health benefit?

The following PICO was used to select literature to inform this review.
Patients
The relevant population of interest is patients with lower extremity paresis.

Interventions
The therapy being considered is FES for home exercise. The majority of home FES devices are cycle ergometers for the lower limbs of patients with lower extremity paresis, although some devices may also include upper arm exercise. All of the devices have evolved over the past 3 decades. Some have internet capability and can be programmed remotely.

- The REGYS and ERGYS series ergometers are manufactured by Therapeutic Alliances. These devices are the largest, include a computer console, and require transfer to an integrated seat. The ERGYS3 is a fourth generation device; earlier models continue to be utilized.
- There are several models of the RT300 by Restorative Therapies, Inc (RTI). The RT300-S includes both leg and arm cycles. This device is used with the patient's own wheelchair and does not require a transfer.
- The Myocycle Home by Myolyn is designed for home use and is the simplest of the cycle ergometers.
- The StimMaster Orion was manufactured by Electrologic. Electrologic ceased business operations in 2005.

Patients with lower extremity paralysis are actively managed by neurologists and physical therapists.

Comparators
The following therapy is currently being used to make decisions about cycle ergometers: standard care without home exercise equipment.

Patients with lower extremity paralysis are actively managed by neurologists and physical therapists.

Outcomes
The general outcomes of interest are reduction in muscle atrophy and muscle spasms, reversal of bone mass loss, improvement in circulation and cardiopulmonary function, and quality of life. These should be measured after at least 3 months of exercise in a home environment with self-directed activity, although supervised training protocols may provide useful information regarding the potential health benefits of cycle ergometers.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs.
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Studies with duplicative or overlapping populations were excluded.

Review of Evidence
Three within-subject comparisons of health benefits of the RT300 are described in Table 12. Ralson et al (2013) reported on the short-term effects (2 weeks) of the cycle ergometer and found no significant benefit on urine output, lower limb swelling, and spasticity compared with standard rehabilitation. Dolbow et al (2013) reported an improvement in quality of life on 2 of 4 domains. However, only 11 of the original 17 participants who remained in the study after the first 8 weeks were included in this report, and this detail was not reported in the second publication. It is notable that the incentive to remain in the study in the first 8 weeks was...
strong because the Veterans Affairs Medical Center purchased the devices for participants who met exercise requirements over the first 8 weeks of device rental. In the third study, Johnston et al (2009) conducted an RCT to evaluate the health benefits of home FES cycling in children with a pediatric RT300. The 3 groups in this study were FES cycling, passive cycling, and electrical stimulation controls. There was no significant difference in health measures across the groups, although the FES group had a greater within-subject improvement in 1 of 4 health measures. Compliance was supervised by parents, who filled out activity logs and had regular contact with study personnel. Because this study was conducted over a decade ago, it is uncertain if newer models of the RT300 would show greater health benefits.

Table 12. Summary of Studies on the RT300

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Participants</th>
<th>Treatment</th>
<th>Assessment</th>
<th>Training Duration</th>
<th>Outcome</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ralston et al (2013)</td>
<td>Prospective within-subject comparison</td>
<td>14 individuals with recent SCI</td>
<td>2-week crossover of FES cycling 4 times per week with the RT300 or standard rehab</td>
<td>Urine output, lower limb swelling, spasticity</td>
<td>2 weeks</td>
<td>No benefit compared to standard rehab</td>
<td>Only 2 weeks of FES may not have been sufficient</td>
</tr>
<tr>
<td>Dolbow et al (2013)</td>
<td>Prospective within-subject comparison</td>
<td>11 male veterans with SCI (73% with tetraplegia)</td>
<td>Home FES that increased in speed, resistance, and duration over 8 weeks</td>
<td>Quality of Life</td>
<td>8 weeks</td>
<td>Improvement in physical and environmental domains but not psychological and social</td>
<td>Selective reporting of the 11 participants who completed the initial study (Dolbow et al 2012)</td>
</tr>
<tr>
<td>Johnston et al (2009)</td>
<td>RCT with within-subject comparison</td>
<td>30 children with SCI</td>
<td>Home FES cycling group, with passive cycling and electrical stimulation—only controls</td>
<td>Oxygen uptake, rHR, forced vital Capacity, lipid profile</td>
<td>3 times per week for 6 months</td>
<td>There was no significant difference across groups. The FES group showed a greater percent increase in 1 of 4 measures compared with the control groups</td>
<td>Early model of device that may not be representative of current devices</td>
</tr>
</tbody>
</table>

FES: functional electrical stimulation; RCT: randomized controlled trial; rHR: resting heart rate; SCI: spinal cord injury,

Sadowsky et al (2013) evaluated motor and sensory recovery with long-term use of the ERGYS2. Individuals with SCI who were treated with FES had positive outcomes on motor and sensory scores compared with individuals who did not receive FES, but the retrospective study was limited by potential for selection bias. The within-subject comparisons in Table 13 uniformly show an improvement in aerobic capacity and metabolism with training. Griffin et al (2009) showed in their prospective study that cycling for 30 minutes, 2 to 3 times per week, for 10 weeks on the ERGYS2 resulted in improvements in a number of physiological measures of health (lean
muscle mass, work capacity, glucose tolerance, insulin levels, inflammatory markers) along with an improvement in motor and sensory function. These positive results are notable for the relatively short training period. A reduction in bone mass and osteoporosis is common in individuals with SCI, but no studies have demonstrated an improvement in bone mineral density. A major limitation in relevance of the studies for the present evidence review is that they do not appear to have been conducted in the home environment. The REGYS and ERGYS cycle ergometers have a bulky integrated seat and require transfer from a wheelchair, which may be a significant limitation to home use. Sustained motivation to exercise for 2 to 3 times per week outside of the investigational setting is uncertain. (See Table 13 for more study details.)

Table 13. Summary of Studies on the ERGYS2

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Participants</th>
<th>Treatment</th>
<th>Assessment</th>
<th>Training Duration</th>
<th>Outcome</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sadowsky et al (2013)</td>
<td>Retrospective matched comparison</td>
<td>25 adults with chronic SCI who received FES cycling and 20 individuals with SCI who did not receive FES</td>
<td>Long-term rehabilitation on the ERGYS2</td>
<td>>1-point improvement on the combined motor-sensory scores on the ASIA impairment scale</td>
<td>29 months (range, 3 to 168)</td>
<td>FES improved both motor and sensory scores compared with controls</td>
<td>Potential bias in who was referred for FES</td>
</tr>
<tr>
<td>Griffin et al (2009)</td>
<td>Prospective within-subject comparison</td>
<td>18 adults with SCI</td>
<td>Cycling for 30 min, 2 to 3 times per week on the ERGYS2</td>
<td>ASIA score, body composition, motor and sensory function, and metabolism</td>
<td>10 weeks</td>
<td>Improvement in lean muscle mass, cycling power, work capacity, endurance, glucose tolerance, insulin levels, inflammatory markers, and motor and sensory neurological function</td>
<td>10 week duration of study</td>
</tr>
</tbody>
</table>

ASIA: American Spinal Injury Association (neurological classification of SCI test battery); DEXA: Dual energy x-ray absorptiometry, FES: functional electrical stimulation; SCI: spinal cord injury

Kressler et al (2014) conducted an analysis of data usage patterns and energy expenditure of 314 individuals over 20183 home activity sessions with Restorative Therapies FES cycle ergometers (e.g., RT300; see Tables 14 and 15). With use categorized into low (<2 days/week), medium (2 to 5 days/week) and high use (at least 5 days/week), 71% of individuals with SCI were considered low users with an average of 0.9 days and 34 minutes of cycling per week. Seven of the 314 individuals were high users (2%) and 83 were medium users (27%). Kressler et al (2014) noted that none of the users met the recommended 1000 kcals/wk, with maximal weekly expenditure of 43 kcals.
Table 14. Characteristics of Studies on Home Use of Restorative Therapies Cycle Ergometers

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Participants</th>
<th>Treatment Delivery</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kressler et al (2014)</td>
<td>US</td>
<td>314 individuals with SCI who had home network-connected Restorative Therapies FES cycle ergometers</td>
<td>Analysis of data on usage patterns and energy expenditure from 314 individuals across 20,183 activity sessions</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR: not reported; SCI: spinal cord injury

Table 15. Results on Home Use of Restorative Therapies Cycle Ergometers

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>N (%)</th>
<th>Average days/wk (SD)</th>
<th>Average min/wk (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kressler et al (2014)</td>
<td>< 2 days per week</td>
<td>218 (71%)</td>
<td>0.9 (0.4)</td>
<td>34 (21)</td>
</tr>
<tr>
<td></td>
<td>2 to 5 days per week</td>
<td>83 (27%)</td>
<td>3.1 (0.7)</td>
<td>118 (50)</td>
</tr>
<tr>
<td></td>
<td>> 5 days per week</td>
<td>7 (2%)</td>
<td>6.3 (1.0)</td>
<td>672 (621)</td>
</tr>
</tbody>
</table>

SD: standard deviation

Dolbow et al (2012) assessed factors affecting compliance with recommended levels of activity on a home cycle ergometer. Seventeen veterans with SCI were provided a rental RT300 and instructed to cycle continuously for 40 to 60 minutes, 3 times per week. If the participants achieved the recommended level of exercise, the Veterans Affairs Medical Center would purchase the device. Thus, there was a strong incentive to achieve the recommended level of exercise. Participants were monitored for another 8 weeks after purchase to determine if compliance remained high without the incentive, although participation in a study was also known to improve adherence. Adherence rates were 71.7% for the first 8 weeks and 62.9% for the second 8-week period (not statistically different). The odds of adhering to the exercise program in the first 8 weeks were higher in younger participants (odds ratio [OR] = 4.86, P = .02), in participants who were active prior to the study (OR = 4.59, P = .02) and in participants with non-FES pain (OR = 2.22, P = .01). Level of injury, time since injury, and history of depression were not significant factors in adherence. Five older participants dropped out of the study before the second 8-week period began. The remaining participants were included in a subsequent report of the effect of the exercise on quality of life over the 8-weeks of the study.

Section Summary: Functional Electrical Stimulation Exercise Equipment for Spinal Cord Injuries

The evidence on FES exercise equipment consists primarily of within-subject, pretreatment to posttreatment comparisons. Evidence was identified on 2 commercially available FES cycle ergometer models for the home, the RT300 series and the REGYS/ERGYS series. There is a limited amount of evidence on the RT300 series. None of the studies showed an improvement in health benefits, and 1 analysis of use for 314 individuals over 20,000 activity sessions with a Restorative Therapies device showed that a majority of users used the device for 34 minutes per week. Two percent of individuals with SCI used the device for an average of 6 days per week, but caloric expenditure remained low. Compliance was shown in 1 study to be affected by the age of participants and level of activity prior to the study. Studies on the REGYS/ERGYS series have more uniformly shown an improvement in physiologic measures of health and in sensory and motor function. A limitation of these studies is that they all appear to have been conducted in supervised research centers. No studies were identified on long-term home use of ERGYS cycle ergometers. The feasibility and long-term health benefits of using this device in the home is uncertain.

Summary of Evidence

For individuals who have loss of hand and upper-extremity function due to SCI or stroke who receive FES, the evidence includes a few small case series. Relevant outcomes are functional outcomes and quality of life. Interpretation of the evidence is limited by the low number of patients studied and lack of data demonstrating the utility of FES outside the investigational
setting. It is uncertain whether FES can restore some upper-extremity function or improve the quality of life. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have chronic foot drop who receive FES, the evidence includes randomized controlled trials (RCTs), a systematic review, and a longitudinal cohort study. Relevant outcomes are functional outcomes and quality of life. For chronic poststroke foot drop, 2 RCTs comparing FES with a standard ankle-foot orthosis (AFO) showed improved patient satisfaction with FES but no significant differences between groups in objective measures such as walking. The cohort study assessed patients’ ability to avoid obstacles while walking on a treadmill using FES versus AFO. Although the FES group averaged a 4.7% higher rate of avoidance, the individual results between devices ranged widely. One RCT with 53 subjects examining neuromuscular stimulation for foot drop in patients with multiple sclerosis showed a reduction in falls and improved patient satisfaction compared with an exercise program but did not demonstrate a clinically significant benefit in walking speed. The other RCT showed that at 12 months, both FES and AFO had improved walking speed, but the difference in improvement between the 2 devices was not significant. A reduction in falls is an important health outcome. However, it was not a primary study outcome and should be corroborated. The literature on FES in children with cerebral palsy includes a systematic review of small studies with within-subject designs. Further study is needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have SCI at segments T4 to T12 who receive FES, the evidence includes case series. Relevant outcomes are functional outcomes and quality of life. No controlled trials were identified on FES for standing and walking in patients with SCI. However, case series are considered adequate for this condition because there is no chance for unaided ambulation in this population with SCI at this level. Some studies have reported improvements in intermediate outcomes, but improvements in health outcomes (e.g., ability to perform activities of daily living, quality of life) have not been demonstrated. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have SCI who receive FES exercise equipment, the evidence includes prospective within-subject comparisons. Relevant outcomes are symptoms, functional outcomes, and quality of life. The evidence on FES exercise equipment consists primarily of within-subject, pretreatment to posttreatment comparisons. Evidence was identified on 2 commercially available FES cycle ergometer models for the home, the RT300 series and the REGYS/ERGYS series. There is limited evidence on the RT300 series. None of the studies showed an improvement in health benefits, and 1 analysis of use for 314 individuals over 20,000 activity sessions with a Restorative Therapies device showed that a majority of users used the device for 34 minutes per week. Two percent of individuals with SCI used the device for an average of 6 days per week, but caloric expenditure remained low. Compliance was shown in 1 study to be affected by the age of participants and level of activity prior to the study. Studies on the REGYS/ERGYS series have more uniformly shown an improvement in physiologic measures of health and in sensory and motor function. A limitation of these studies is that they all appear to have been conducted in supervised research centers. No studies were identified on long-term home use of ERGYS cycle ergometers. The feasibility and long-term health benefits of using this device in the home is uncertain. The evidence is insufficient to determine the effects of the technology on health outcomes.

Supplemental Information
Practice Guidelines and Position Statements
In 2009, the National Institute for Health and Care Excellence (NICE) published guidance stating that the evidence on functional electrical stimulation for footdrop of neurologic origin appeared adequate to support its use. The Institute noted that patient selection should involve a multidisciplinary team. The Institute advised that further publication on the efficacy of functional electrical stimulation would be useful, specifically including patient-reported outcomes (e.g.,
quality of life, activities of daily living) and these outcomes should be examined in different ethnic and socioeconomic groups.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
Medicare (2002; updated in 2006) issued a national coverage policy recommending coverage for neuromuscular electrical stimulation for ambulation in spinal cord injury patients consistent with the U.S. Food and Drug Administration (FDA) labeling for the Parastep device. The Medicare decision memorandum indicates that Medicare considered the same data as those discussed herein in its decision-making process. The decision memorandum noted that the available studies were flawed but concluded that the limited ambulation provided by the Parastep device supported its clinical effectiveness and thus its coverage eligibility. The inclusion criteria outlined by Medicare are as follows:
- Persons with intact lower motor units (L1 and below)...
- Persons with muscle and joint stability for weight bearing at upper and lower extremities that can demonstrate balance and control to maintain an upright support posture independently;
- Persons who demonstrate brisk muscle contraction to NMES and have sensory perception of electrical stimulation sufficient for muscle contraction;
- Persons that possess high motivation, commitment and cognitive ability to use such devices for walking;
- Persons that can transfer independently and can demonstrate standing tolerance for at least 3 minutes;
- Persons that can demonstrate hand and finger function to manipulate controls;
- Persons with at least 6-month post recovery spinal cord injury and restorative surgery;
- Persons without hip and knee degenerative disease and no history of long bone fracture secondary to osteoporosis; and
- Persons that have demonstrated a willingness to use the device long-term."

The exclusion criteria are as follows:
- Persons with cardiac pacemakers;
- Severe scoliosis or severe osteoporosis;
- Skin disease or cancer at area of stimulation;
- Irreversible contracture; or
- Autonomic dysreflexia.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this review are listed in Table 16.

Table 16. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT03810963</td>
<td>Electrically Induced Cycling and Nutritional Counseling for Counteracting Obesity After SCI</td>
<td>17</td>
<td>May 2019</td>
</tr>
<tr>
<td>NCT02602639</td>
<td>Functional Electrical Stimulation with Rowing as Exercise after Spinal Cord Injury (FES)</td>
<td>6</td>
<td>Sep 2019</td>
</tr>
<tr>
<td>NCT03495986</td>
<td>Spinal Cord Injury Exercise and Nutrition Conceptual Engagement (SCIENCE)</td>
<td>40</td>
<td>Jul 2022</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00890916</td>
<td>Hand Function for Tetraplegia Using a Wireless Neuroprosthesis</td>
<td>11</td>
<td>Dec 2017</td>
</tr>
<tr>
<td>NCT00583804</td>
<td>Implanted Myoelectric Control for Restoration of Hand Function in Spinal Cord Injury</td>
<td>10</td>
<td>Jan 2015</td>
</tr>
<tr>
<td>NCT03385005</td>
<td>Evaluating Neuromuscular Stimulation for Restoring Hand Movements</td>
<td>15</td>
<td>Mar 2019</td>
</tr>
<tr>
<td>NCT No.</td>
<td>Trial Name</td>
<td>Planned Enrollment</td>
<td>Completion Date</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00890916</td>
<td>Hand Function for Tetraplegia Using a Wireless Neuroprosthesis</td>
<td>11</td>
<td>Nov 2019</td>
</tr>
<tr>
<td>NCT02602639</td>
<td>Functional Electrical Stimulation with Rowing as Exercise after Spinal Cord Injury (FES)</td>
<td>6</td>
<td>Sep 2020</td>
</tr>
<tr>
<td>NCT03385005</td>
<td>Evaluating Neuromuscular Stimulation for Restoring Hand Movements</td>
<td>15</td>
<td>Mar 2019</td>
</tr>
<tr>
<td>NCT03495986</td>
<td>Spinal Cord Injury Exercise and Nutrition Conceptual Engagement (SCIENCE)</td>
<td>40</td>
<td>Jul 2022</td>
</tr>
<tr>
<td>NCT03440632</td>
<td>Functional Electrical Stimulation during walking cerebral palsy</td>
<td>25</td>
<td>Aug 2021</td>
</tr>
<tr>
<td>NCT00583804</td>
<td>Implanted Myoelectric Control for Restoration of Hand Function in Spinal Cord Injury</td>
<td>10</td>
<td>Jan 2026</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT03810963</td>
<td>Electrically Induced Cycling and Nutritional Counseling for Counteracting Obesity After SCI</td>
<td>15</td>
<td>May 2019 (updated 10/04/19)</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

References

Documentation for Clinical Review

- No records required

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy. Inclusion or exclusion of codes does not constitute or imply member coverage or provider reimbursement.

IE

The following services may be considered investigational.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT®</td>
<td>97116</td>
<td>Therapeutic procedure, 1 or more areas, each 15 minutes; gait training (includes stair climbing)</td>
</tr>
<tr>
<td></td>
<td>97530</td>
<td>Therapeutic activities, direct (one-on-one) patient contact (use of dynamic activities to improve functional performance), each 15 minutes</td>
</tr>
<tr>
<td></td>
<td>97760</td>
<td>Orthotic(s) management and training (including assessment and fitting when not otherwise reported), upper extremity(ies), lower extremity(ies) and/or trunk, initial orthotic(s) encounter, each 15 minutes</td>
</tr>
</tbody>
</table>
Definitions of Decision Determinations

Medically Necessary: Services that are Medically Necessary include only those which have been established as safe and effective, are furnished under generally accepted professional standards to treat illness, injury or medical condition, and which, as determined by Blue Shield, are: (a) consistent with Blue Shield medical policy; (b) consistent with the symptoms or diagnosis; (c) not furnished primarily for the convenience of the patient, the attending Physician or other provider; (d) furnished at the most appropriate level which can be provided safely and effectively to the patient; and (e) not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of the Member’s illness, injury, or disease.
Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member's health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member's eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department at (800) 541-6652, or the Transplant Case Management Department at (800) 637-2066 ext. 3507708 or visit the provider portal at www.blueshieldca.com/provider.

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.