Medical Policy

2.01.95 Electromyography and Nerve Conduction Studies

Original Policy Date: December 18, 2009
Effective Date: August 1, 2023
Section: 2.0 Medicine
Page: Page 1 of 20

Policy Statement

I. Electrodiagnostic assessment, consisting of electromyography, nerve conduction studies, and related measures, may be considered medically necessary as an adjunct to history, physical exam, and imaging studies when all of the following criteria are met:
 A. Signs and symptoms of peripheral neuropathy and/or myopathy are present
 B. Definitive diagnosis cannot be made by physical exam and imaging studies alone
 C. Work-up for one or more of the following categories of disease is indicated (see Policy Guidelines section):
 1. Compressive neuropathies
 2. Nerve root compression
 3. Traumatic nerve injuries
 4. Generalized and focal neuropathies/myopathies
 5. Plexopathies
 6. Motor neuron diseases
 7. Neuromuscular junction disorders

II. A repeat electrodiagnostic assessment may be considered medically necessary when at least one or more of the following criteria has been met:
 A. Development of new symptoms or signs suggesting a second diagnosis in an individual who has received an initial diagnosis
 B. Interim progression of disease following an initial test that was inconclusive, such that a repeat test is likely to elicit additional findings
 C. Unexpected change(s) in the course of disease or response to treatment, suggesting that the initial diagnosis may be incorrect and that reexamination is indicated

III. Electrodiagnostic assessment, consisting of electromyography, nerve conduction studies, and related measures, is considered investigational when the above criteria are not met, including but not limited to, the following situations:
 A. Screening of asymptomatic individuals
 B. Serial assessments to evaluate progression of disease in an individual with a previously diagnosed neuropathy or myopathy
 C. Evaluation of treatment response in an individual with previously diagnosed neuropathy or myopathy
 D. Evaluation of disease severity in an individual with previously diagnosed neuropathy or myopathy

NOTE: Refer to Appendix A to see the policy statement changes (if any) from the previous version.

Policy Guidelines

The following list gives specific diagnoses, according to categories of testing listed in the policy statement, for which electromyography (EMG) and nerve conduction studies (NCS) generally provide useful information in confirming or excluding the diagnosis, above that provided by clinical examination and imaging alone. The list includes the most common diagnoses for testing but is not exhaustive. There may also be less common disorders for which EMG/NCS provide useful diagnostic information.

- Compressive neuropathies:
 - Carpal tunnel syndrome

An independent member of the Blue Shield Association

Reproduction without authorization from Blue Shield of California is prohibited
• Ulnar nerve entrapment
• Thoracic outlet syndrome
• Tarsal tunnel syndrome
• Other peripheral nerve entrapments

• Nerve root compression (when physical exam and magnetic resonance imaging are inconclusive):
 o Cervical nerve root compression
 o Thoracic nerve root compression
 o Lumbosacral nerve root compression

• Traumatic nerve injuries

• Generalized and focal polynuropathies:
 o Diabetic neuropathy
 o Uremic neuropathy
 o Alcohol-related neuropathy
 o Hereditary neuropathies:
 ▪ Charcot-Marie-Tooth
 ▪ Other hereditary neuropathies
 o Demyelinating polyneuropathies:
 ▪ Guillain-Barré syndrome (acute)
 ▪ Chronic idiopathic demyelinating polyneuropathy

• Generalized myopathies:
 o Polymyositis
 o Dermatomyositis
 o Muscular dystrophies

• Plexopathies:
 o Cervical plexopathy
 o Brachial plexopathy
 o Lumbosacral plexopathy

• Motor neuron diseases:
 o Amyotrophic lateral sclerosis
 o Progressive muscular atrophy
 o Progressive bulbar palsy
 o Pseudobulbar palsy
 o Primary lateral sclerosis

• Neuromuscular junction disorders:
 o Myasthenia gravis
 o Myasthenic syndrome
 o Lambert-Eaton syndrome

The following recommendations on the number of repeat services are reproduced from the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) position statement (1999). These estimates do not represent absolute maximums for all individuals; they are defined by AANEM as being sufficient to make a diagnosis in at least 90% of individuals with that particular diagnosis. Therefore, there may be a small percentage of cases that require a greater number of tests than specified in Table PG1.

<table>
<thead>
<tr>
<th>Indication</th>
<th>Needle EMG</th>
<th>NCSs</th>
<th>Other Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Tests</td>
<td>Motor NCS (± F Wave)</td>
<td>Sensory NCS</td>
</tr>
<tr>
<td>Carpal tunnel syndrome (unilateral)</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Carpal tunnel syndrome (bilateral)</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Radiculopathy</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Indication</td>
<td>Needle EMG</td>
<td>NCSs</td>
<td>Other Studies</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>Mononeuropathy</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Polynearupathy or mononeuropathy</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Multiplex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myopathy</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Motor neuropathy (e.g., amyotrophic</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>lateral sclerosis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plexopathy</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Neuromuscular junction</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Tarsal tunnel syndrome (unilateral)</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Tarsal tunnel syndrome (bilateral)</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Weakness, fatigue, cramps, or</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>twitching (focal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weakness, fatigue, cramps, or</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>twitching (general)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain, numbness, or tingling (unilateral)</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Pain, numbness, or tingling (bilateral)</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Adapted from American Association of Electrodiagnostic Medicine (1999).
EMG: electromyography; NCS: nerve conduction studies; RNS: repetitive nerve stimulation.

The AANEM position statement (1999) also included minimum standards for a lab performing electrodiagnostic evaluation:

- The tests should be medically indicated
- The tests should be performed using equipment that provides an assessment of all parameters of the recorded signals. Equipment designed for screening purposes is not acceptable
- The NCS should be performed by a provider or by a trained technician under the direct supervision of a provider
- A trained provider must perform the needle EMG exam
- One provider should perform and supervise all components of the electrodiagnostic testing

Coding

Nerve Conduction Studies

CPT codes 95907-95913 describe one or more nerve conduction studies. For the purposes of coding, a single conduction study is defined as a sensory conduction test, a motor conduction test with or without an F wave test, or an H-reflex test. Each type of study (sensory, motor with or without F wave, H-reflex) for each nerve includes all orthodromic and antidromic impulses associated with that nerve and constitutes a distinct study when determining the number of studies in each grouping (e.g., 1-2 or 3-4 nerve conduction studies). Each type of nerve conduction study is counted only once when multiple sites on the same nerve are stimulated or recorded. The numbers of these separate tests should be added to determine which code to use:

- **95907**: Nerve conduction studies; 1-2 studies
- **95908**: Nerve conduction studies; 3-4 studies
- **95909**: Nerve conduction studies; 5-6 studies
- **95910**: Nerve conduction studies; 7-8 studies
- **95911**: Nerve conduction studies; 9-10 studies
- **95912**: Nerve conduction studies; 11-12 studies
- **95913**: Nerve conduction studies; 13 or more studies

A table of each sensory, motor, and mixed nerves with its appropriate nerve conduction study code is located in the CPT manual, Appendix J. This table, Electrodiagnostic Medicine Listing of Sensory, Motor, and Mixed Nerves, enhances accurate reporting of codes 95907-95913.
Needle Electromyography

Needle Electromyography (EMG) may be billed with the following code ranges:

- **95860-95872**: Needle electromyography code range
- **95885-95887**: Needle electromyography performed with nerve condition, amplitude and latency/velocity study code range

Description

Electromyography and nerve conduction studies, also collectively known as an electrodiagnostic assessment, evaluate the electrical functioning of muscles and peripheral nerves. These tests are diagnostic aids for the evaluation of myopathy and peripheral neuropathy by identifying, localizing, and characterizing electrical abnormalities in the skeletal muscles and peripheral nerves.

Related Policies

- Paraspinal Surface Electromyography to Evaluate and Monitor Back Pain

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

Regulatory Status

EMG/NCS measure nerve and muscle function and may be indicated when evaluating limb pain, weakness related to possible spinal nerve compression, or other neurologic injury or disorder. A number of electromyographic devices have received marketing clearance from the U.S. Food and Drug Administration. Several devices are listed in Table 1.

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Food and Drug Administration FDA Clearance</th>
<th>510(k) No.</th>
<th>Food and Drug Administration FDA Product Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>NuVasive® NVMS System</td>
<td>NuVasive</td>
<td>2011</td>
<td>K112718</td>
<td>ETN</td>
</tr>
<tr>
<td>CERSR® Electromyography System</td>
<td>SpineMatrix</td>
<td>2011</td>
<td>K110048</td>
<td>IKN</td>
</tr>
<tr>
<td>CareFusion Nicolet® EDX System</td>
<td>CareFusion 209</td>
<td>2012</td>
<td>K120979</td>
<td>GWF</td>
</tr>
<tr>
<td>Physical Monitoring Registration Unit-S (PMRU-S)</td>
<td>Oktx</td>
<td>2013</td>
<td>K123902</td>
<td>IKN</td>
</tr>
<tr>
<td>MyoVision 3G Wirefree™ System</td>
<td>Precision Biometrics</td>
<td>2013</td>
<td>K123399</td>
<td>IKN</td>
</tr>
<tr>
<td>Neuro Omega™ System</td>
<td>Alpha Omega Engineering</td>
<td>2013</td>
<td>K123796</td>
<td>GZL</td>
</tr>
<tr>
<td>EPAD™</td>
<td>SafeOp Surgical</td>
<td>2014</td>
<td>K132616</td>
<td>GWF</td>
</tr>
<tr>
<td>Sierra Summit, Sierra Ascent</td>
<td>Cadwell Industries</td>
<td>2017</td>
<td>K162383</td>
<td>IKN, GWF</td>
</tr>
</tbody>
</table>
Electromyography and Nerve Conduction Studies

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Food and Drug Administration</th>
<th>510(k) No.</th>
<th>Food and Drug Administration</th>
<th>Product Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPAD 2™</td>
<td>SafeOp Surgical</td>
<td>2019</td>
<td>K182542</td>
<td>FDA</td>
<td>GWF, IKN</td>
</tr>
<tr>
<td>Mediracer® NCS</td>
<td>Mediracer</td>
<td>2019</td>
<td>K190536</td>
<td>FDA</td>
<td>JXE, IKN</td>
</tr>
<tr>
<td>Mega-TMS™</td>
<td>Soterix Medical, Inc.</td>
<td>2021</td>
<td>K192823</td>
<td>FDA</td>
<td>GWF, JXE</td>
</tr>
</tbody>
</table>

Rationale

Background

Electrodiagnostic Assessment

Electromyography (EMG) and nerve conduction studies (NCS) are used as adjuncts to clinical evaluation of myopathy and peripheral neuropathy. These tests intend to evaluate the integrity and electrical function of muscles and peripheral nerves. They are performed when there is clinical suspicion for a myopathic or neuropathic process and when clinical examination and standard laboratory testing cannot make a definitive diagnosis.

Test results do not generally provide a specific diagnosis. Rather, they provide additional information that assists physicians in characterizing a clinical syndrome. EMG/NCS may be useful when there is no clear etiology when symptoms are severe or rapidly progressing, or when symptoms are atypical (e.g., asymmetrical, acute onset, or appearing to be autonomic).

According to the American Association of Neuromuscular & Electrodiagnostic Medicine (1999), electrodiagnostic assessment has the following goals:

1. "Identify normal and abnormal nerve, muscle, motor or sensory neuron, and NMJ [neuromuscular junction] functioning.
2. Localize region(s) of abnormal function.
3. Define the type of abnormal function.
4. Determine the distribution of abnormalities.
5. Determine the severity of abnormalities.
6. Estimate the date of a specific nerve injury.
7. Estimate the duration of the disease.
8. Determine the progression of abnormalities or recovery from abnormal function.
9. Aid in diagnosis and prognosis of the disease.
10. Aid in selecting treatment options.
11. Aid in following response to treatment by providing objective evidence of change in NM [neuromuscular] function.
12. Localize correct locations for injections of intramuscular agents...."

Components of the electrodiagnostic exam may include needle EMG, NCS, repetitive nerve stimulation study, somatosensory evoked potentials, and blink reflexes.

Electromyography

Needle Electromyography

An EMG needle electrode is inserted into selected muscles, chosen by the examining physician depending on the differential diagnosis and other information available during the exam. The response of the muscle to electrical stimulation is recorded. Three components are evaluated: observation at rest, action potential with minimal voluntary contraction, and action potential with maximum contraction.

Single Fiber Electromyography

In single-fiber EMG, a needle electrode records the response of a single muscle fiber. This test can evaluate "jitter," which is defined as the variability in the time between activation of the nerve and
generation of the muscle action potential. Single fiber EMG can also measure fiber density, which is defined as the mean number of muscle fibers for 1 motor unit.

Nerve Conduction Studies

In NCS, both motor and sensory nerve conduction are assessed. For motor conduction, electrical stimuli are delivered along various points on the nerve, and the electrical response is recorded from the appropriate muscle. For sensory conduction, electrical stimuli are delivered to 1 point on the nerve, and the response is recorded at a distal point on the nerve. Parameters recorded include velocity, amplitude, latency, and configuration.

Late Wave Responses

Late waves are a complement to the basic NCS and evaluate the functioning of the proximal segment of peripheral nerves, such as the nerve root and the anterior horn cells. There are 2 types of late responses: the H-reflex and the F wave.

The H-reflex is elicited by stimulating the posterior tibial nerve and measuring the response in the gastrocnemius muscle. It is analogous to the ankle reflex and can be prolonged by radiculopathy at S1 or by peripheral neuropathy.

The F wave is assessed by supramaximal stimulation of the distal nerve and can help estimate the conduction velocity in the proximal portion of the nerve. This will provide information on the presence of proximal nerve abnormalities, such as radiculopathy or plexopathy.

Repetitive Nerve Stimulation

Repetitive nerve stimulation studies evaluate the integrity and function of the neuromuscular junction. The test involves stimulating a nerve repetitively at variable rates and recording the response of the corresponding muscle(s). Disorders of the neuromuscular junction will show a diminished muscular response to repetitive stimulation.

Somatosensory Evoked Potentials

Somatosensory evoked potentials evaluate nerve conduction in various sensory fibers of both the peripheral and central nervous system and test the integrity and function of these nerve pathways. They are typically used to assess nerve conduction in the spinal cord and other central pathways that cannot be assessed by standard NCS.

Blink Reflexes

The blink reflexes, which are analogs of the corneal reflex, are evaluated by stimulating the orbicularis oculi muscle at the lower eyelid. They are used to localize lesions in the fifth or seventh cranial nerves.

Differential Diagnosis

The specific components of an individual test are not standardized. Rather, a differential diagnosis is developed by the treating physician, and/or the clinician performing the test, and the specific components of the exam are determined by the disorders being considered in the differential. Also, the differential diagnosis may be modified during the exam to reflect initial findings, and this may also influence the specific components included in the final analysis.

Literature Review

Evidence reviews assess whether a medical test is clinically useful. A useful test provides information to make a clinical management decision that improves the net health outcome. That is, the balance of benefits and harms is better when the test is used to manage the condition than when another test or no test is used to manage the condition.
The first step in assessing a medical test is to formulate the clinical context and purpose of the test. The test must be technically reliable, clinically valid, and clinically useful for that purpose. Evidence reviews assess the evidence on whether a test is clinically valid and clinically useful. Technical reliability is outside the scope of these reviews, and credible information on technical reliability is available from other sources.

Promotion of greater diversity and inclusion in clinical research of historically marginalized groups (e.g., People of Color [African-American, Asian, Black, Latino and Native American]; LGBTQIA (Lesbian, Gay, Bisexual, Transgender, Queer, Intersex, Asexual); Women; and People with Disabilities [Physical and Invisible]) allows policy populations to be more reflective of and findings more applicable to our diverse members. While we also strive to use inclusive language related to these groups in our policies, use of gender-specific nouns (e.g., women, men, sisters, etc.) will continue when reflective of language used in publications describing study populations.

Suspected Peripheral Neuropathy or Myopathy

Clinical Context and Test Purpose
The purpose of electrodiagnostic testing in patients who have suspected peripheral neuropathy or myopathy is to aid in the diagnosis of disease and to guide treatment.

The following PICO was used to select literature to inform this review.

Populations
The relevant population of interest is individuals who have suspected peripheral neuropathy or myopathy. The population falls into the broad categories of compressive neuropathies, nerve root compression, traumatic nerve injuries, generalized and focal neuropathies and myopathies, plexopathy, motor neuron disease, and neuromuscular junction disorders.

Interventions
The relevant intervention of interest is electrodiagnostic assessment, consisting of electromyography (EMG), nerve conduction studies (NCS), and related measures, to evaluate the integrity and electrical function of muscles and peripheral nerves.

Comparators
The relevant comparators of interest are standard clinical diagnostic tools and practices currently being used to inform decisions on the diagnosis of suspected peripheral neuropathy or myopathy: history, physical exam, laboratory studies, and imaging studies when appropriate.

Outcomes
The clinical utility would be supported by a reduction in pain or other symptoms and improvement in functional measures and quality of life measures specific to the condition. Alternatively, evidence of clinical utility may be derived from a chain of evidence linking improvement in diagnostic accuracy with improvements in treatment guided by a correct diagnosis.

Beneficial outcomes include aiding in the diagnosis of disease and guiding treatment that results in a reduction in symptoms such as pain, numbness, or tingling, and improvements in functional outcomes of muscle strength and quality of life measures.

If patients are diagnosed with peripheral neuropathies or myopathies based on inaccurate EMG or NCS results, unnecessary treatment may be initiated when watchful waiting may be the more appropriate management approach.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for randomized controlled trials;

In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.

To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.

Studies with duplicative or overlapping populations were excluded.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Review of Evidence
In general, EMG and NCS are considered the criterion standards for establishing abnormalities of the electrical system of nerves and muscles, and hence there is a lack of a true reference standard.

Below are examples of representative literature on clinical validity.

Carpal Tunnel Syndrome
Systematic Reviews
A 2016 clinical practice guideline on the management of carpal tunnel syndrome (CTS) was published by the American Academy of Orthopaedic Surgeons (AAOS), which included a systematic review of the literature as part of its guideline development process. The guideline found moderate evidence (evidence from 2 or more moderate quality studies) to support that "diagnostic questionnaires and/or electrodiagnosis studies could be used to aid the diagnosis of carpal tunnel syndrome." Furthermore, AAOS noted that the evaluation of electrodiagnostic tests requires a reference standard against which the performance of the diagnostic test can be compared, but there is currently no consensus supporting a single diagnostic tool as a reference standard for CTS.

Observational Studies
Two studies identified calculated the sensitivity and specificity of EMG and NCS. One study used Carpal Tunnel Syndrome-6 (CTS-6) test results as a comparator and the other used mean values of normal controls as comparators.

Fowler et al (2014) evaluated the diagnostic accuracy of electrodiagnostic testing and ultrasound for diagnosing CTS, using validated clinical diagnostic criteria as the reference standard (Table 2). The reference standard was a validated clinical diagnostic tool (CTS-6 score). The electrodiagnostic exam was considered positive when there was a distal motor latency of 4.2 ms or more or a distal sensory latency of 3.2 ms or more. Sensitivity, specificity, positive predictive value, and negative predictive values were calculated (Table 3). This study was limited by the imperfect nature of the reference standard (CTS-6 is not a true criterion standard for diagnosis) and suboptimal sensitivity.

Chang et al (2006) examined the sensitivity and specificity of various motor and sensory NCS parameters in 280 consecutive patients (360 hands) with suspected CTS and 150 normal controls (see Table 2). In the 360 hands with suspected CTS, 328 (91%) had at least 1 electrodiagnostic abnormality and 9% had normal exams. For individual NCS measures, the sensitivity ranged from 73% to 87% and the specificity ranged from 97% to 99% (see Table 3). Among the 150 controls, NCS readings were mostly within the normal range, with a few sensory and motor findings falling in the abnormal range.

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Country</th>
<th>Dates</th>
<th>Participants</th>
<th>Blinding</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fowler et al (2014)</td>
<td>Cross-sectional</td>
<td>U.S.</td>
<td>NR</td>
<td>Consecutive patients referred to an upper-extremity</td>
<td>EMG technician blinded to</td>
<td>All patients underwent: (1) CTS-6, (2) ultrasound, and (3) electrodiagnostic testing</td>
</tr>
</tbody>
</table>
Electromyography and Nerve Conduction Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Country</th>
<th>Dates</th>
<th>Participants</th>
<th>Blinding</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang et al (2006)</td>
<td>Cross-sectional</td>
<td>Taiwan</td>
<td>NR</td>
<td>Consecutive patients presenting with ≥1 of the following: numbness, paresthesia, nocturnal awakening, weakness, or pain • Patients with CTS: 280 • Volunteer controls: 150</td>
<td>EMG technicians blinded to clinical information and diagnosis</td>
<td>All patients underwent the following EMG/NCS testing: motor DL, W-P MCV, sensory DL (D1), sensory DL (D2), sensory DL (D4), W-P SCV (D2), W-P SCT (D2), M-R and M-U</td>
</tr>
</tbody>
</table>

CTS: carpal tunnel syndrome; CTS-6: Carpal Tunnel Syndrome-6; D1: thumb; D2: index finger; D4: ring finger; DL: distal latency; EMG: electromyography; M-R: median-radial sensory latency difference; M-U: median-ulnar sensory latency difference; NCS: nerve conduction studies; NR: not reported; W-P MCV: wrist-palm motor conduction velocity; W-P SCT: wrist-palm sensory conduction time; W-P SCV: wrist-palm sensory conduction velocity.

Table 3. Summary of Nonrandomized Study Results for Carpal Tunnel Syndrome

<table>
<thead>
<tr>
<th>Study</th>
<th>Sensitivity (95% CI), %</th>
<th>Specificity (95% CI), %</th>
<th>PPV (95% CI), %</th>
<th>NPV (95% CI), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fowler et al (2014)</td>
<td>US<sup>a</sup> 89 (77 to 95)</td>
<td>EMG<sup>a</sup> 89 (77 to 95)</td>
<td>US<sup>a</sup> 90 (72 to 97)</td>
<td>EMG<sup>a</sup> 80 (61 to 92)</td>
</tr>
<tr>
<td>Chang et al (2006)</td>
<td>US<sup>b</sup> 65.0 (77 to 95)</td>
<td>EMG<sup>b</sup> 99.3 (72 to 97)</td>
<td>US<sup>b</sup> 90 (61 to 92)</td>
<td>EMG<sup>b</sup> 80 (61 to 92)</td>
</tr>
<tr>
<td>Motor DL<sup>b</sup></td>
<td>65.0</td>
<td>99.3</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>SDL (D1)<sup>b</sup></td>
<td>80.3</td>
<td>98.7</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>SDL (D2)<sup>b</sup></td>
<td>72.5</td>
<td>99.3</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>SDL (D4)<sup>b</sup></td>
<td>76.7</td>
<td>100</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>W-P MCV<sup>b</sup></td>
<td>81.7</td>
<td>100</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>W-P SCV<sup>b</sup></td>
<td>73.6</td>
<td>100</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>W-P SCT<sup>b</sup></td>
<td>80.8</td>
<td>100</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>M-R<sup>b</sup></td>
<td>86.7</td>
<td>98.7</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>M-U<sup>b</sup></td>
<td>87.2</td>
<td>96.7</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

CI: confidence interval; D1: thumb; D2: index finger; D4: ring finger; DL: distal latency; EMG: electromyography; M-R: median-radial sensory latency difference; M-U: median-ulnar sensory latency difference; NPV: negative predictive value; NR: not reported; PPV: positive predictive value; SDL: sensory distal latency; US: ultrasound; W-P MCV: wrist-palm motor conduction velocity; W-P SCT: wrist-palm sensory conduction time; W-P SCV: wrist-palm sensory conduction velocity.

^a Compared with Carpal Tunnel Syndrome-6 test results.

^b Compared with mean values of normal controls ± 2.5 standard deviations.

Two studies calculated correlations between EMG and NCS with other measures rather than calculating sensitivity and sensitivity. Homan et al (1999) evaluated the association among clinical symptoms, physical exam, and electrodiagnostic studies in 824 individuals with suspected work-related CTS from 6 job facilities. A total of 449 individuals had at least 1 positive finding on any exam. Of these, only 3% had positive findings on all 3 domains (symptoms, physical exam, NCS). Overall, there was poor agreement across the 3 measures (κ range, 0.0-0.18). Tulipan et al (2017) retrospectively studied 50 patients presenting for CTS treatment. Patients completed the Disabilities of the Arm, Shoulder, and Hand questionnaire and the 12-Item Short-Form Health Survey. There were no
significant correlations between Disabilities of the Arm, Shoulder, and Hand questionnaire and the 12-Item Short-Form Health Survey scores with median motor or sensory latency measures.

Lumbar Radiculopathy

The North American Spine Society published evidence-based guidelines on the diagnosis and treatment of lumbar radiculopathy in 2012. These guidelines were based on a systematic review of the literature identifying studies of diagnostic techniques. Five studies on the diagnostic accuracy of electrophysiologic tests were discussed; 2 case-control studies and 3 case series. Sensitivities for various EMG and NCS parameters ranged from 17% to 65%. In the 2 studies that included a normal control group, specificity for EMG abnormalities was 100% and 87%, respectively.

After the North American Spine Society publication, Mondelli et al (2013) evaluated EMG findings in patients with lumbosacral radiculopathy and herniated disc. The diagnosis of radiculopathy due to herniated disc was based on a combination of clinical symptoms and magnetic resonance imaging results. A total of 108 consecutive patients with monoradiculopathy at L4, L5, or S1 were enrolled from 4 electrodiagnostic laboratories. At least 1 EMG abnormality was recorded in 42% of patients, with the most common being a delay in the F wave minimum latency. EMG abnormalities could be predicted on multivariate regression by the presence of clinical symptoms, including muscle weakness, abnormal reflexes, and the presence of paresthesias.

Peroneal Neuropathy

The Association of Neuromuscular & Electrodiagnostic Medicine (AANEM; 2005) published an evidence review in support of practice parameters on the utility of electrodiagnostic testing for patients with suspected peroneal neuropathy. Reviewers performed a systematic review of the literature through July 2003 on the utility of EMG/NCS. Eleven studies met inclusion criteria, 4 of which were prospective. Eight studies described the use of motor NCS, 8 described the use of sensory NCS, and 5 described the use of needle EMG. Strength of evidence assessments considered the studies to be class III or IV level of evidence. The strongest study design (n=4 studies) used a cohort of patients with clinically diagnosed peroneal neuropathy and reported the sensitivity of EMG/NCS. Sensitivity rates for EMG/NCS varied widely by the type of measure, and the specific area tested, ranging from 19% to 91%. Specificity was not reported. Reviewers concluded that certain NCS parameters were useful for diagnosing peroneal neuropathy and proposed a specific testing strategy to maximize sensitivity. EMG was not found to be useful for confirming the diagnosis of peroneal neuropathy but was helpful in excluding alternative diagnoses.

Pediatric Myopathy

Evidence was identified comparing the accuracy of EMG and NCS with muscle biopsy in children with a suspected myopathy. The intent of this line of research is to evaluate whether a diagnosis can be made with certainty using clinical exam plus EMG or NCS, thereby avoiding muscle biopsy.

Rabie et al (2007) compared the diagnostic accuracy of EMG with muscle biopsy in children who had neuropathies or myopathies. The authors retrospectively identified 27 children between the ages of 6 days to 16 years who had EMG studies, a muscle biopsy, and a final diagnosis assigned by the treating physician(s). Final diagnoses were congenital myopathy (5 patients), nonspecific myopathy (6 patients), congenital myasthenic syndrome (3 patients), juvenile myasthenia gravis (1 patient), arthrogryposis multiplex congenital (2 patients), hereditary motor and sensory neuropathy (1 patient), bilateral peroneal neuropathies (1 patient), and normal (8 patients). In general, the sensitivity of EMG for detecting abnormalities implied by the final diagnosis was low. For example, the sensitivity of EMG for detecting myopathic motor unit potentials in any myopathy was 47% (7/15), and the sensitivity for congenital myopathies was 40% (2/5). The sensitivity was especially low for patients younger than 2 years of age compared with older children, but this comparison was limited by small numbers of patients in each group.

Ghosh and Sorenson (2014) performed a retrospective chart review of 227 patients who received EMG studies between 2009 and 2013. Seventy-two (32%) patients also received muscle biopsy, and these
72 patients constituted the study group. The criterion standard was myopathy confirmed by muscle biopsy or by genetic testing. The overall sensitivity of EMG was 91%, with the most commonly missed diagnosis being metabolic myopathy. The overall specificity was 67%, which is lower than most other reports of specificity, raises concern whether the sensitivity of muscle biopsy is lower than expected, thus resulting in EMG results that are true-positives being classified as false-positives.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

To determine the clinical utility of EMG and NCS, studies need to evaluate the use of EMG and NCS testing to guide treatment decisions and then report health outcomes following the treatments. No studies of this type were identified.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

The lack of high-quality evidence on the clinical utility of EMG and NCS is reflected by the lack of evidence-based guidelines. Most existing guidelines rely on expert consensus. This section reviews guidelines from 3 organizations, focusing on the methods of the development process, and the rigor of evidence review. The 3 organizations are AANEM, AAOS (CTS only), and the American Academy of Neurology (AAN). The Practice Guidelines and Position Statements discussion in the Supplemental Information section summarizes the recommendations of the guidelines.

The AANEM (2009) made recommendations on electrodiagnostic medicine based on the consensus of 43 experts in the field of electrodiagnostic medicine. The AANEM provided no information on the selection process for these individuals but noted that they were neurologists or physiatrists representing diverse practice types and locations.

The AAOS (2016) published practice guidelines on the diagnosis and treatment of CTS. The authors included both practicing physicians, as clinical experts, and methodologists who were free of potential conflicts of interest. The guideline was developed by creating structured PICO questions, which directed the systematic literature search. Upon completion of the systematic reviews, the physician experts and methodologists evaluated and integrated all material to develop the final recommendations, which were based only on the best available evidence for any given outcome.

The AAN (2004) published a position statement on electrodiagnostic assessment. According to AAN, "A position statement is a concise explanation of AAN's position on a certain issue that includes background information and the rationale behind the Academy's position. The position statement, generally not exceeding 1000 words, is in-depth and must reference all supporting evidence." The AAN document on EMG did not provide a literature review or references to accompany recommendations.

Section Summary: Suspected Peripheral Neuropathy or Myopathy
EMG/NCS testing is generally considered to be specific but not sensitive. However, the evidence on the diagnostic accuracy of EMG and NCS is poor, in part because of the lack of a true reference standard. In the scattered evidence identified, sensitivity was often less than 50%, and specificity was
most commonly in the range of 80% to 100%. Because of the small quantity and poor quality of the evidence, precise estimates of sensitivity and specificity for specific disorders cannot be made. No studies were identified that evaluated clinical utility. Existing guidelines from prominent major specialty societies in electrodiagnostic medicine consist primarily of expert consensus. For guidelines based on an evidence review, such as the AAOS guidelines, the evidence was not sufficient to make evidence-based recommendations. All 3 societies have included general recommendations on the utility of electrodiagnostic testing as an adjunct to clinical diagnosis for myopathic and neuropathic disorders. Guidelines supporting these recommendations do not offer detailed indications for patient testing by diagnosis.

Supplemental Information
The purpose of the following information is to provide reference material. Inclusion does not imply endorsement or alignment with the evidence review conclusions.

Practice Guidelines and Position Statements
Guidelines or position statements will be considered for inclusion in ‘Supplemental Information’ if they were issued by, or jointly by, a US professional society, an international society with US representation, or National Institute for Health and Care Excellence (NICE). Priority will be given to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.

American Association of Neuromuscular & Electrodiagnostic Medicine
The American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) has published several position statements on the recommended coverage policy for electromyography (EMG) and nerve conduction studies (NCS). The first, initially published in 1999, was updated in 2004. The second was published in 2017. Needle EMG and NCS testing was recommended for the following indications:

1. "Focal neuropathies, entrapment neuropathies, or compressive lesions/syndromes such as carpal tunnel syndrome, ulnar neuropathies, or root lesions, for localization.
2. Traumatic nerve lesions, for diagnosis and prognosis.
3. Diagnosis or confirmation of suspected generalized neuropathies, such as diabetic, uremic, metabolic, or immune.
4. Repetitive nerve stimulation in diagnosis of neuromuscular junction disorders such as myasthenia gravis, myasthenic syndrome.
5. Symptom-based presentations such as ‘pain in limb’, weakness, disturbance in skin sensation or ‘paresthesia’ when appropriate pretest evaluations are inconclusive and the clinical assessment unequivocally supports the need for the study.
7. Polyneuropathy-metabolic, degenerative, hereditary.
8. Plexopathy-idiopathic, trauma, infiltration.
9. Myopathy-including polymyositis and dermatomyositis, myotonic, and congenital myopathies.
10. Precise muscle location for injections such as botulinum toxin, phenol, etc."

This document also listed situations where electrodiagnostic assessment is considered investigational.

In 2005, the AANEM published practice parameters on the utility of EMG/NCS for the diagnosis of peroneal neuropathy. This evidence-based review focused on whether EMG/NCS are useful in diagnosing peroneal neuropathy and/or in determining prognosis. Table 4 lists recommendations AANEM deemed “possibly useful, to make or confirm” a diagnosis.

Table 4. Guidelines on Diagnosis of Peroneal Neuropathy
Motor NCSs of the peroneal nerve recording from the AT and EDB muscles
Orthodromic and antidromic superficial peroneal sensory NCS

At least 1 additional normal motor and sensory NCS in the same limb, to assure that the peroneal neuropathy is isolated, and not part of a more widespread local or systemic neuropathy

Data are insufficient to determine the role of needle EMG in making the diagnosis of peroneal neuropathy. However, abnormalities on needle examination outside of the distribution of the peroneal nerve should suggest alternative diagnoses.

In patients with confirmed peroneal neuropathy, EDX studies are possibly useful in providing prognostic information, with regards to recovery of function.

AT: anterior tibialis; COE: class of evidence; EDB: extensor digitorum brevis; EDX: electrodiagnostic; EMG: electromyography; LOR: level of recommendation; NCS: nerve conduction studies.

A 2003 consensus statement on diagnosing multifocal motor neuropathy from AANEM\(^\text{16}\), has stated: "Multifocal motor neuropathy is a diagnosis that is based on recognition of a characteristic pattern of clinical symptoms, clinical signs, and electrodiagnostic findings. The fundamental electrodiagnostic finding is partial conduction block of motor axons."

In 2004, the AANEM approved a position statement, endorsed by the American Academy of Neurology and the American Academy of Physical Medicine & Rehabilitation, on diagnostic electromyography included the following\(^\text{14}\):

- "Clinical needle electromyography (EMG) is an invasive medical procedure during which the physician inserts an electrode into a patient’s muscles to diagnose the cause of muscle weakness. Needle EMG allows physicians to distinguish a wide range of conditions, from carpal tunnel syndrome to ALS (Lou Gehrig disease).
- Needle EMG is also an integral component of the neurological examination that cannot be separated from the physician’s evaluation of the patient. The test is dynamic and depends upon the visual, tactile, and audio observations of the examiner. There is no way for physicians to independently verify the accuracy of reports performed by non-physicians.
- Misdiagnosis can mean delayed or inappropriate treatment (including surgery) and diminished quality of life. Because needle EMG is strictly diagnostic, the procedure clearly and exclusively falls within the practice of medicine."

In 2018, the AANEM published a policy statement on the use of EMG for distal symmetric polyneuropathy.\(^\text{15}\) The statement described 5 situations in which EMG would be beneficial for patients with distal symmetric polyneuropathy: "1) determining primary and alternative diagnoses; 2) determining severity, duration, and prognosis of disease; 3) evaluating risk of associated problems; 4) determining the effect of medications; and 5) evaluating the effect of toxic exposures."

In 2020, the AANEM issued a consensus statement on the utility and practice of electrodiagnostic (EDX) testing in the pediatric population.\(^\text{17}\) The following conclusions were made:

- "...certain categories of inherited diseases such as muscular dystrophy and SMA [spinal muscular atrophy] do not routinely require EMG as part of the diagnostic evaluation. However, in atypical cases EDX testing can provide critical assistance with narrowing of the differential diagnosis."
- "...techniques and practice for this important diagnostic test modality will continue to evolve in the future."
- "EDX testing in children will continue to complement other diagnostic test modalities such as serum tests, muscle biopsy, imaging, and genetic testing."

American Academy of Orthopaedic Surgeons

In 2007, the American Academy of Orthopaedic Surgeons (AAOS) issued guidelines on the diagnosis of carpal tunnel syndrome. Table 5 lists recommendations made.
Table 5. Guidelines on Diagnosis of Carpal Tunnel Syndrome

<table>
<thead>
<tr>
<th>No.</th>
<th>Recommendation</th>
<th>LOR</th>
<th>GOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1a</td>
<td>"The physician may obtain electrodiagnostic tests to differentiate among diagnoses."</td>
<td>V</td>
<td>C</td>
</tr>
<tr>
<td>3.1b</td>
<td>"The physician may obtain electrodiagnostic tests in the presence of thenar atrophy and/or persistent numbness."</td>
<td>V</td>
<td>C</td>
</tr>
<tr>
<td>3.1c</td>
<td>"The physician should obtain electrodiagnostic tests if clinical and/or provocative tests are positive and surgical management is being considered."</td>
<td>II/III</td>
<td>B</td>
</tr>
<tr>
<td>3.2</td>
<td>"If the physician orders electrodiagnostic tests, the testing protocol should follow the AAN/AANEM/AAPMR guidelines for diagnosis of CTS."</td>
<td>IV/V</td>
<td>C</td>
</tr>
</tbody>
</table>

In 2016, the AAOS issued guidelines on the management of carpal tunnel syndrome. Table 6 lists recommendations made.

Table 6. Guidelines on Management of Carpal Tunnel Syndrome

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Strength of Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Limited evidence supports that a hand-held nerve conduction study (NCS) device might be used for the diagnostic of carpal tunnel syndrome."</td>
<td>Limited</td>
</tr>
<tr>
<td>"Moderate evidence supports that diagnostic questionnaires and/or electrodiagnostic studies could be used to aid the diagnosis of carpal tunnel syndrome."</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

North American Spine Society
In 2012, the North American Spine Society published guidelines on the diagnosis and treatment of lumbar disc herniation. This document made the following statement about the use of EMG/NCS for diagnosis of lumbar disc herniation: "Electromyography, nerve conduction studies and F-waves are suggested to have limited utility in the diagnosis of lumbar disc herniation with radiculopathy. H-reflexes can be helpful in the diagnosis of an S1 radiculopathy, though are not specific to the diagnosis of lumbar disc herniation. (Grade of Recommendation: B)"

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
Sensory nerve conduction threshold tests are distinct from "assessment of nerve conduction velocity, amplitude and latency" and from "short-latency somatosensory evoked potentials."

In 2004, the Centers for Medicare & Medicaid affirmed its 2002 noncoverage policy, concluding: "that the use of any type of sNCT [sensory nerve conduction threshold test] device (e.g., 'current output' type device used to perform current perception threshold [CPT], pain perception threshold [PPT], or pain tolerance threshold [PTT] testing or 'voltage input' type device used for voltage-nerve conduction threshold (v-NCT) testing) to diagnose sensory neuropathies or radiculopathies in Medicare beneficiaries is not reasonable and necessary."

Ongoing and Unpublished Clinical Trials
A search of ClinicalTrials.gov in April 2023 did not identify any ongoing or unpublished trials that would likely influence this review.

References

Documentation for Clinical Review

Please provide the following documentation:

- History and physical and/or consultation notes including:
 - Clinical findings and duration of pain
 - Activity and functional limitations
 - Pertinent past procedural and surgical history
 - Imaging studies
 - Prior diagnostic testing and results
 - Complete nerve conduction test(s)

Post Service (in addition to the above, please include the following):

- Operative report(s)

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy.

The following codes are included below for informational purposes. Inclusion or exclusion of a code(s) does not constitute or imply member coverage or provider reimbursement policy. Policy Statements are intended to provide member coverage information and may include the use of some codes for clarity. The Policy Guidelines section may also provide additional information for how to interpret the Policy Statements and to provide coding guidance in some cases.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT*</td>
<td>95860</td>
<td>Needle electromyography; 1 extremity with or without related paraspinal areas</td>
</tr>
<tr>
<td></td>
<td>95861</td>
<td>Needle electromyography; 2 extremities with or without related paraspinal areas</td>
</tr>
<tr>
<td></td>
<td>95863</td>
<td>Needle electromyography; 3 extremities with or without related paraspinal areas</td>
</tr>
<tr>
<td></td>
<td>95864</td>
<td>Needle electromyography; 4 extremities with or without related paraspinal areas</td>
</tr>
<tr>
<td></td>
<td>95865</td>
<td>Needle electromyography; larynx</td>
</tr>
<tr>
<td></td>
<td>95866</td>
<td>Needle electromyography; hemidiaphragm</td>
</tr>
<tr>
<td></td>
<td>95867</td>
<td>Needle electromyography; cranial nerve supplied muscle(s), unilateral</td>
</tr>
<tr>
<td></td>
<td>95868</td>
<td>Needle electromyography; cranial nerve supplied muscles, bilateral</td>
</tr>
<tr>
<td></td>
<td>95869</td>
<td>Needle electromyography; thoracic paraspinal muscles (excluding T1 or T12)</td>
</tr>
<tr>
<td></td>
<td>95870</td>
<td>Needle electromyography; limited study of muscles in 1 extremity or non-limb (axial) muscles (unilateral or bilateral), other than thoracic paraspinal, cranial nerve supplied muscles, or sphincters</td>
</tr>
<tr>
<td></td>
<td>95872</td>
<td>Needle electromyography using single fiber electrode, with quantitative measurement of jitter, blocking and/or fiber density, any/all sites of each muscle studied</td>
</tr>
<tr>
<td></td>
<td>95885</td>
<td>Needle electromyography, each extremity, with related paraspinal areas, when performed, done with nerve conduction, amplitude and latency/velocity study; limited (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>Type</td>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>95886</td>
<td>Needle electromyography, each extremity, with related paraspinal areas, when performed, done with nerve conduction, amplitude and latency/velocity study; complete, five or more muscles studied, innervated by three or more nerves or four or more spinal levels (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>95887</td>
<td>Needle electromyography, non-extremity (cranial nerve supplied or axial) muscle(s) done with nerve conduction, amplitude and latency/velocity study (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>95907</td>
<td>Nerve conduction studies; 1-2 studies</td>
</tr>
<tr>
<td></td>
<td>95908</td>
<td>Nerve conduction studies; 3-4 studies</td>
</tr>
<tr>
<td></td>
<td>95909</td>
<td>Nerve conduction studies; 5-6 studies</td>
</tr>
<tr>
<td></td>
<td>95910</td>
<td>Nerve conduction studies; 7-8 studies</td>
</tr>
<tr>
<td></td>
<td>95911</td>
<td>Nerve conduction studies; 9-10 studies</td>
</tr>
<tr>
<td></td>
<td>95912</td>
<td>Nerve conduction studies; 11-12 studies</td>
</tr>
<tr>
<td></td>
<td>95913</td>
<td>Nerve conduction studies; 13 or more studies</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/18/2009</td>
<td>New Policy</td>
</tr>
<tr>
<td>01/15/2010</td>
<td>Coding Update</td>
</tr>
<tr>
<td>02/22/2013</td>
<td>Coding Update</td>
</tr>
<tr>
<td>03/30/2015</td>
<td>Policy title change from Nerve Conduction Studies</td>
</tr>
<tr>
<td></td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>01/01/2017</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>08/01/2018</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>09/01/2019</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>08/01/2023</td>
<td>Policy reactivated. Previously archived from 07/01/2020 to 07/31/2023.</td>
</tr>
</tbody>
</table>

Definitions of Decision Determinations

Medically Necessary: Services that are Medically Necessary include only those which have been established as safe and effective, are furnished under generally accepted professional standards to treat illness, injury or medical condition, and which, as determined by Blue Shield, are: (a) consistent with Blue Shield medical policy; (b) consistent with the symptoms or diagnosis; (c) not furnished primarily for the convenience of the patient, the attending Physician or other provider; (d) furnished at the most appropriate level which can be provided safely and effectively to the patient; and (e) not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of the Member’s illness, injury, or disease.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.
Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements and Feedback (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member’s health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member’s eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department at (800) 541-6652, or the Transplant Case Management Department at (800) 637-2066 ext. 3507708 or visit the provider portal at www.blueshieldca.com/provider.

We are interested in receiving feedback relative to developing, adopting, and reviewing criteria for medical policy. Any licensed practitioner who is contracted with Blue Shield of California or Blue Shield of California Promise Health Plan is welcome to provide comments, suggestions, or concerns. Our internal policy committees will receive and take your comments into consideration.

For utilization and medical policy feedback, please send comments to: MedPolicy@blueshieldca.com

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.
POLICY STATEMENT

| BEFORE | AFTER
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactivated Policy</td>
<td>Electromyography and Nerve Conduction Studies 2.01.95</td>
</tr>
<tr>
<td>Policy Statement: N/A</td>
<td>Policy Statement:</td>
</tr>
<tr>
<td></td>
<td>I. Electrodiagnostic assessment, consisting of electromyography, nerve conduction studies, and related measures, may be considered medically necessary as an adjunct to history, physical exam, and imaging studies when all of the following criteria are met:</td>
</tr>
<tr>
<td></td>
<td>A. Signs and symptoms of peripheral neuropathy and/or myopathy are present</td>
</tr>
<tr>
<td></td>
<td>B. Definitive diagnosis cannot be made by physical exam and imaging studies alone</td>
</tr>
<tr>
<td></td>
<td>C. Work-up for one or more of the following categories of disease is indicated (see Policy Guidelines section):</td>
</tr>
<tr>
<td></td>
<td>1. Compressive neuropathies</td>
</tr>
<tr>
<td></td>
<td>2. Nerve root compression</td>
</tr>
<tr>
<td></td>
<td>3. Traumatic nerve injuries</td>
</tr>
<tr>
<td></td>
<td>4. Generalized and focal neuropathies/myopathies</td>
</tr>
<tr>
<td></td>
<td>5. Plexopathies</td>
</tr>
<tr>
<td></td>
<td>6. Motor neuron diseases</td>
</tr>
<tr>
<td></td>
<td>7. Neuromuscular junction disorders</td>
</tr>
<tr>
<td>II. A repeat electrodiagnostic assessment may be considered medically necessary when at least one or more of the following criteria has been met:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Development of new symptoms or signs suggesting a second diagnosis in an individual who has received an initial diagnosis</td>
</tr>
<tr>
<td></td>
<td>B. Interim progression of disease following an initial test that was inconclusive, such that a repeat test is likely to elicit additional findings</td>
</tr>
<tr>
<td></td>
<td>C. Unexpected change(s) in the course of disease or response to treatment, suggesting that the initial diagnosis may be incorrect and that reexamination is indicated</td>
</tr>
</tbody>
</table>
POLICY STATEMENT

<table>
<thead>
<tr>
<th>BEFORE</th>
<th>AFTER</th>
<th>Blue font: Verbiage Changes/Additions</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.</td>
<td>Electrodiagnostic assessment, consisting of electromyography, nerve conduction studies, and related measures, is considered investigational when the above criteria are not met, including but not limited to, the following situations:</td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>Screening of asymptomatic individuals</td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td>Serial assessments to evaluate progression of disease in an individual with a previously diagnosed neuropathy or myopathy</td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td>Evaluation of treatment response in an individual with previously diagnosed neuropathy or myopathy</td>
<td></td>
</tr>
<tr>
<td>D.</td>
<td>Evaluation of disease severity in an individual with previously diagnosed neuropathy or myopathy</td>
<td></td>
</tr>
</tbody>
</table>