1.01.26 Cooling Devices Used in the Outpatient Setting

Policy Statement

I. Circulating and noncirculating cooling devices are considered investigational.

II. Combination circulating cooling and compression (cryopneumatic) devices are considered investigational.

NOTE: Refer to Appendix A to see the policy statement changes (if any) from the previous version.

Policy Guidelines

Coding
Circulating cooling devices may be identified by the following HCPCS codes:

- E0218: Fluid circulating cold pad with pump, any type
- E0236: Pump for water circulating pad

Description
Cooling devices use chilled water to decrease the local temperature of tissue. There are a variety of cooling devices available, ranging from gravity-fed devices that manually fill with iced water, to motorized units that both cool and circulate chilled water. These devices are typically used when ice packs would normally be applied (e.g., after orthopedic surgical procedures).

Related Policies

- Continuous Passive Motion in the Home Setting

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

Regulatory Status

A large number of circulating and noncirculating cooling devices have been cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process since 1976, and are listed in Table 1.

FDA product code: ILO.

Table 1. Cooling Devices Cleared by the U.S. Food and Drug Administration

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Date Cleared</th>
<th>510(k) No.</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armory Motion</td>
<td>Pain Management Technologies, Inc.</td>
<td>06/10/2022</td>
<td>K213097</td>
<td>To treat post-surgical and acute injuries to reduce swelling and pain</td>
</tr>
<tr>
<td>Ice Compression First, Duo, & Moove Systems</td>
<td>MksParis</td>
<td>1/11/2021</td>
<td>K193079</td>
<td>To treat post-surgical and acute injuries to reduce swelling and pain</td>
</tr>
<tr>
<td>Game Ready GRPro 2.1 System</td>
<td>Cool Systems, Inc (Db a Game Ready)</td>
<td>10/29/2019</td>
<td>K192114</td>
<td>To treat post-surgical and acute injuries to reduce swelling and pain</td>
</tr>
<tr>
<td>Polar Care Wave</td>
<td>Breg Inc</td>
<td>03/01/2019</td>
<td>K183702</td>
<td>To treat post-surgical and acute injuries to reduce swelling and pain</td>
</tr>
<tr>
<td>Therm-X, Therm-X At, Therm-X Pro Ath</td>
<td>Zenith Technical Innovations</td>
<td>5/10/2019</td>
<td>K190854</td>
<td>To treat post-surgical and acute injuries to reduce swelling and pain</td>
</tr>
<tr>
<td>Med4 Elite</td>
<td>Cool Systems, Inc (Db a Game Ready)</td>
<td>09/29/2017</td>
<td>K171685</td>
<td>To treat post-surgical and acute injuries to reduce swelling and pain</td>
</tr>
<tr>
<td>Nice1</td>
<td>Nice Recovery Systems, LLC</td>
<td>12/23/2014</td>
<td>K143197</td>
<td>To treat post-surgical and acute injuries to reduce swelling and pain</td>
</tr>
<tr>
<td>Dynatron Peltier Thermostatim Probe</td>
<td>Dynatronics Corp.</td>
<td>01/24/2014</td>
<td>K132057</td>
<td>To treat post-surgical and acute injuries to reduce swelling and pain</td>
</tr>
</tbody>
</table>

Rationale

Background
Cold and Compression Therapy
Use of ice packs and various bandages and wraps following surgery or musculoskeletal and soft tissue injury is common. A variety of manually operated and mechanical continuous cooling devices are commercially available.

The standard postoperative treatment for musculoskeletal surgeries consists of cryotherapy (cold therapy) and various types of compressive wraps. Both ice packs (with or without additives to maintain temperature) and cooling devices can provide cryotherapy. Circulating cooling devices are designed to provide a constant low temperature, which might provide additional benefit compared with the more variable temperature achieved with the intermittent replacement of ice packs. Noncirculating cooling devices might also allow less variable cooling due to the larger volume of ice stored in the insulated tank and the use of circulated ice water.

Noncirculating Cooling Devices
The CryoCuff® and Polar Care Cub devices are examples of passive, noncirculating cooling devices. The CryoCuff device consists of an insulated container filled with iced water that is attached to a compressive cuff. When the CryoCuff container is raised, the water fills and pressurizes the cuff. The amount of pressure is proportional to the height of the container. When body heat warms the water, the cooler is lowered and water drained. The cooler is then raised above the affected limb, and cold water refills the compressive cuff. The Polar Care Cub unit consists of pads held in place with elastic straps, which may also provide compression. The pads are attached to a built-in hand pump that circulates the water through the pads at the same time as increasing the compression around the joint.

Circulating Cooling Devices
In active, circulating cooling devices, a motorized pump circulates chilled water and may also provide pneumatic compression. For example, the AutoChill® device, which may be used with a CryoCuff, consists of a pump that automatically exchanges water from the cuff to the cooler, eliminating the need for manual water recycling. The Hot/Ice Thermal Blanket is another circulating cooling device. It consists of 2 rubber pads connected by a rubber hose to the main cooling unit. Fluid is circulated via the hose through the thermal blankets. The temperature of the fluid is controlled by the main unit and can be either hot or cold. The Game Ready™ Accelerated Recovery System is a circulating cooling
device combined with a pneumatic component. The system consists of various soft wraps and a computer-control unit to circulate the water through the wraps and to provide intermittent pneumatic compression. The Hilotherm® Clinic circulates cooled water through preshaped thermoplastic polyurethane facial masks for use after different types of facial surgery. ThermaZone® provides thermal therapy with pads specific to various joints as well as different areas of the head (front, sides, back, eyes). CTM™ 5000 and cTreatment are computer-controlled devices that provide cooling at a specific (11°C) and continuous temperature.

Literature Review

Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life, and ability to function, including benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms. To assess whether the evidence is sufficient to draw conclusions about the net health outcome of technology, 2 domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent 1 or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. Randomized controlled trials are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Promotion of greater diversity and inclusion in clinical research of historically marginalized groups (e.g., People of Color [African-American, Asian, Black, Latino and Native American]; LGBTQIA [Lesbian, Gay, Bisexual, Transgender, Queer, Intersex, Asexual]; Women; and People with Disabilities [Physical and Invisible]) allows policy populations to be more reflective of and findings more applicable to our diverse members. While we also strive to use inclusive language related to these groups in our policies, use of gender-specific nouns (e.g., women, men, sisters, etc.) will continue when reflective of language used in publications describing study populations.

Cooling Device Post–Knee Surgery

Clinical Context and Therapy Purpose

The purpose of a cooling device is to provide a treatment option that is an alternative to or an improvement on existing therapies, such as a standard icing regimen, in patients with pain and/or swelling after knee surgery.

The following PICO was used to select literature to inform this review.

Populations

The relevant population of interest is individuals with pain and/or swelling after knee surgery.

Interventions

The therapy being considered is a cooling device.

Comparators

Comparators of interest include a standard icing regimen. Treatments include postoperative exercises, nonsteroidal anti-inflammatory drugs (NSAIDs), and opioids.
Outcomes
The general outcomes of interest are symptoms, functional outcomes, medication use, and resource utilization.

The existing literature evaluating a cooling device as a treatment for pain and/or swelling after knee surgery has varying lengths of follow-up, ranging from 1 to 6 weeks. While studies described below all reported at least 1 outcome of interest, longer follow-up was necessary to fully observe outcomes. Therefore, 1 to 6 weeks of follow-up is considered necessary to demonstrate efficacy.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
1. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
2. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
3. To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
4. Studies with duplicative or overlapping populations were excluded.

Because studies that include the preferred comparator (standard icing regimen) are available, studies that use other comparators, such as no icing therapy or room temperature devices, were not evaluated in this evidence review.

Review of Evidence
Noncirculating Cooling Devices
Randomized Controlled Trials
Schroder and Passler (1994) compared the CryoCuff device with ice therapy in 44 patients who had undergone repair of the anterior cruciate ligament (Table 2). Those receiving ice therapy administered an ice bag 3 times a day postoperatively. While those randomized to the CryoCuff group reported significant decreases in pain, swelling, and analgesic use, it is not clear whether icing 3 times a day is a typical icing regimen (Table 3).

Whitelaw et al (1995) reported on results of a trial that randomized 102 patients undergoing knee arthroscopy in the outpatient setting to a CryoCuff device or traditional ice therapy (Tables 2 and 3). Those in the CryoCuff group reported decreased pain medication compared with the control group but there was no significant difference in average pain assessment. Interpretation of these results is limited because the number of exchanges of ice packs and water recirculation was not reported. In 1994, Healy et al reported that the CryoCuff device provided no benefit to pain control or swelling compared with ice packs in a randomized trial of 76 patients (105 knees) undergoing total knee arthroplasty. No data were provided on the number of ice pack exchanges, although the water was recirculated in the CryoCuff device every 1 to 4 hours.

Table 2. Summary of Key RCT Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schroder and Passler</td>
<td>EU</td>
<td>NR</td>
<td>NR</td>
<td>Patients undergoing anterior cruciate ligament</td>
<td>CC (n=21)</td>
</tr>
<tr>
<td>(1994)</td>
<td></td>
<td></td>
<td></td>
<td>reconstruction using autologous patellar tendon</td>
<td>Comparator: ICE (n=23)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>graft</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comparator: ICE with elastic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bandages (n=46)</td>
</tr>
</tbody>
</table>

CC: CryoCuff; EU: European Union; ICE: standard ice packs; NR: not reported; RCT: randomized controlled trial.
Table 3. Summary of Key RCT Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Range of Motion between Groups</th>
<th>Pain Score between Groups</th>
<th>Average Pain Assessment, 24 hrs; 72hrs</th>
<th>Pain Medication Usage over 24 hr Period, Day 1; 2; 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schroder and Passler (1994)¹</td>
<td>p=.0001 to .0177</td>
<td>p=.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitelaw et al (1995)²</td>
<td>CC</td>
<td>4.34; 3.15</td>
<td>4.23; 3.21; 2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICE</td>
<td>4.98; 3.58</td>
<td>5.00; 4.22; 3.12</td>
<td></td>
</tr>
</tbody>
</table>

CC: CryoCuff; ICE: standard ice packs; RCT: randomized controlled trial.

Tables 4 and 5 summarize notable limitations identified in each study.

Table 4. Study Relevance Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Population a</th>
<th>Intervention b</th>
<th>Comparator c</th>
<th>Outcomes d</th>
<th>Follow-Up e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schroder and Passler (1994)¹</td>
<td></td>
<td></td>
<td></td>
<td>1, 2 Follow-up was only 72 hrs post-surgery</td>
<td></td>
</tr>
<tr>
<td>Whitelaw et al (1995)²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

a Population key: 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.
b Intervention key: 1. Not clearly defined; 2. Version used unclear; 3. Delivery not similar intensity as comparator; 4. Not the intervention of interest.
c Comparator key: 1. Not clearly defined; 2. Not standard or optimal; 3. Delivery not similar intensity as intervention; 4. Not delivered effectively.
e Follow-Up key: 1. Not sufficient duration for benefit; 2. Not sufficient duration for harms.

Table 5. Study Design and Conduct Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocation a</th>
<th>Blinding b</th>
<th>Selective Reporting c</th>
<th>Follow-Up d</th>
<th>Power e</th>
<th>Statistical f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schroder and Passler (1994)¹</td>
<td>1. Randomization not described</td>
<td>1, 2, 3. Not blinded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitelaw et al (1995)²</td>
<td>1. Randomization method did not produce groups of equal numbers (56 vs. 46 patients)</td>
<td>1, 2, 3. Not blinded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

d Follow-Up key: 1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).
e Follow-Up key: 1. Not sufficient duration for benefit; 2. Not sufficient duration for harms.
f Statistical key: 1. Intervention is not appropriate for outcome type: (a) continuous; (b) binary; (c) time to event; 2. Intervention is not appropriate for multiple observations per patient; 3. Confidence intervals and/or p values not reported; 4. Comparative treatment effects not calculated.
Circulating Cooling Devices
Randomized Controlled Trials

In the largest study to date, Thienpont (2014) evaluated 116 patients who had undergone total knee arthroplasty who were assigned in a quasi-randomized order to 8 hours of daily advanced cryotherapy at a fixed temperature or to the application of cold packs for 15 minutes after each of 2 physical therapy sessions (Table 6). Both groups could apply cryotherapy during the evening and night whenever they wanted for comfort and pain control. Thirty percent of patients in the advanced cryotherapy group did not use the device at night due to excessive noise. Primary outcomes were visual analog scale pain scores at rest and during deep active knee flexion, walking without aid, and analgesic use. Secondary outcomes were knee range of motion, active straight-leg raising, walking without aid, swelling, visual hematoma, and length of stay. There were no significant differences between groups in visual analog scores, need for analgesics, or any of the secondary outcomes. There was a significant decrease in flexion at 6 weeks in the advanced cryotherapy group (114° vs. 120°; Table 7).

Woolf et al (2008), in a RCT of 60 patients, compared a temperature-controlled cryotherapy device with a standard icing regimen following outpatient knee arthroscopy (Table 6). Both groups were instructed to apply the treatment for 20 minutes every 2 hours during waking hours for the first 4 days after surgery. All night, the cooling device group was instructed to use the device throughout the first 4 nights, whereas the control group was advised to use ice packs as needed. No differences in daytime pain were observed between groups. There was a tendency for more patients in the cryotherapy group to report that they did not awaken from pain during the night; this difference was significant only for postoperative day 2 (36% vs. 6%; p=.04; Table 7). Additional study with a larger number of patients is needed to determine whether the use of continuous cooling at night improves health outcomes.

More recently, a RCT of 47 participants by Rufilli et al (2015) compared 2 homogenous groups of patients with anterior cruciate ligament reconstruction to evaluate the efficacy of a continuous cold flow device (10° to 30°C) relative to conventional crushed ice bags (intervention group n=23; control group n=24; Table 6). All patients were discharged the day after surgery. Primary endpoints included: knee pain (using the numeric rating scale that ranged from 0 [no pain] to 10 [worst pain]); blood loss; measures of knee swelling at 3 sites (patellar apex, 10 cm proximal to the superior patellar pole, 15 cm distal to the superior patellar pole); knee range of motion; and the use of pain medicine. Relative to the control, the intervention group had a significant reduction in numeric rating scale pain scores (p<.001) and a significant decrease in blood loss (p<.001). Knee volume was also significantly lower in the intervention group at the patellar apex (p=.013) and 10 cm proximal to the superior patellar pole (p=.001). Although there was a significant increase in mean flexion (p<.001) for the intervention group relative to the control, there was no difference between groups in the use of pain medication (Table 7). No adverse events were reported in either group postoperatively or related to the use of the cooling device or the ice bags. Researchers noted several limitations to the trial, including small sample size, lack of blinding, and lack of evaluation of longer-term efficacy after hospital discharge.

Rufilli et al (2017) investigated the use of the continuous-flow cold device in a RCT of 50 patients with end-stage knee osteoarthritis after primary total knee arthroplasty who had the same rehabilitation program and pain-relieving strategy. The intervention group (n=24) received the continuous-flow cold device (10° and 30°C) and the control group (n=26) received crushed ice bags postoperatively (Table 6). There were no statistically significant differences between groups in terms of subjective pain scores (using a numeric rating scale), medication use, or knee circumference. In addition, there were no statistically significant differences in blood loss, need for transfusion, or range of motion. However, there was a nonsignificant trend at day 7 toward a lesser increase in knee circumference in the intervention group (Table 7). Reported limitations included small sample size, lack of blinding, lack of evaluation of longer-term efficacy after hospital discharge, and no skin temperature evaluation.
Compared with a traditional icing regimen, the use of a continuous-flow cold device was no better than traditional icing in patients with total knee arthroplasty.

Coviello et al (2022) investigated the use of continuous cold flow device therapy on pain reduction, opioid consumption, recovery time, perioperative bleeding, and patient satisfaction in patients undergoing a total knee arthroplasty (Table 6). Patients (N=100) were randomized into 2 groups receiving either postoperative continuous cold flow therapy (5°) or standard ice pack therapy. There were no differences in preoperative visual analog scale pain scores between groups. Reduction of pain per visual analog scale scores was lower in the continuous cold flow therapy group only at day 1 postoperatively (p=.01) (Table 7). There was an increase in passive range of movement post-surgery in both groups, and a larger difference in the continuous cold flow group at days 1 (111.57° ± 7.04 vs 105.49° ± 11.24; p=.01) and 3 (110.94° ± 7.52 vs 107.39° ± 7.89; p=.01). There was no difference in blood loss between groups. Limitations include small sample size, no mention of blinding, short follow-up time, and measurement of opioids defined as tramadol capsules, which differs from practice in the United States.

Table 6. Summary of Key RCT Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woof et al (2008)³</td>
<td>U.S.</td>
<td>1</td>
<td>NR</td>
<td>Patients receiving outpatient knee arthroscopy</td>
<td>Continuous temperature-controlled cryotherapy system (n=24)</td>
</tr>
<tr>
<td>Thienpont (2014)⁴</td>
<td>EU</td>
<td>1</td>
<td>2012</td>
<td>Patients receiving primary knee arthroplasty for osteoarthritis</td>
<td>Advanced cryotherapy (n=58)</td>
</tr>
<tr>
<td>Rufilli et al (2015)⁵</td>
<td>EU</td>
<td>NR</td>
<td>NR</td>
<td>Patients undergoing anterior cruciate ligament reconstruction</td>
<td>ICE (Cold packs) (n=58)</td>
</tr>
<tr>
<td>Rufilli et al (2017)⁶</td>
<td>EU</td>
<td>1</td>
<td>2013-2014</td>
<td>Patients affected by end-stage knee osteoarthritis and treated with primary total knee arthroplasty, Continuous cold flow device (Hilotherm; n=24), ICE (Crushed ice packs) (n=24)</td>
<td></td>
</tr>
<tr>
<td>Coviello et al (2022)⁸</td>
<td>EU</td>
<td>1</td>
<td>2020-2022</td>
<td>Patients affected by end-stage knee osteoarthritis and treated with primary total knee arthroplasty, Continuous cold flow device (n=50), ICE (Cold packs) (n=50)</td>
<td></td>
</tr>
</tbody>
</table>

EU: European Union; ICE: standard ice packs; NR: not reported; RCT: randomized controlled trial.

Table 7. Summary of Key RCT Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients with Mild Pain Intensity</th>
<th>Mean visual analog score at Rest 2 Days Post-Surgery</th>
<th>Pain Evaluation Scores 1 Day Post-Surgery</th>
<th>Pain Evaluation Scores 7 Days Post-Surgery</th>
<th>Blood Loss</th>
<th>ROM, days 1; 3; and 4 (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woof et al (2008)³</td>
<td>35.7%</td>
<td>5.9%</td>
<td>.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thienpont (2014)⁴</td>
<td>4 ± 3</td>
<td>3.5 ± 2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rufilli et al (2015)⁵</td>
<td>0.9 ± 8</td>
<td>2.4 ± 1.7</td>
<td>26.7 ± 27.3 ml</td>
<td>108.0 ± 91.4 ml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cooling Devices Used in the Outpatient Setting

Table 8. Study Relevance Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Population a</th>
<th>Intervention b</th>
<th>Comparator c</th>
<th>Outcomes d</th>
<th>Follow-Up e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woolf et al (2008)⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thienpont (2014)⁶</td>
<td></td>
<td>2. Version used unclear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rufilli et al (2015)⁶</td>
<td></td>
<td></td>
<td></td>
<td>1,2 Follow-up was limited to the duration of patients' hospital stay</td>
<td></td>
</tr>
<tr>
<td>Rufilli et al (2017)⁷</td>
<td></td>
<td></td>
<td></td>
<td>1,2 Follow-up duration was 7 d</td>
<td></td>
</tr>
<tr>
<td>Coviello et al (2022)⁸</td>
<td></td>
<td>2. Brand not available in the US, unclear if similar to FDA-approved products</td>
<td></td>
<td>1,2 Follow-up duration was limited to hospital stay (max 4 days post-surgery)</td>
<td></td>
</tr>
</tbody>
</table>

FDA: US Food and Drug Administration.

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

a Population key: 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.

b Intervention key: 1. Not clearly defined; 2. Version used unclear; 3. Delivery not similar intensity as comparator; 4. Not the intervention of interest.

c Comparator key: 1. Not clearly defined; 2. Not standard or optimal; 3. Delivery not similar intensity as intervention; 4. Not delivered effectively.

d Outcomes key: 1. Key health outcomes not addressed; 2. Physiologic measures, not validated surrogates; 3. No CONSORT reporting of harms; 4. Not establish and validated measurements; 5. Clinical significant difference not prespecified; 6. Clinical significant difference not supported.

e Follow-Up key: 1. Not sufficient duration for benefit; 2. Not sufficient duration for harms.

Table 9. Study Design and Conduct Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocation a</th>
<th>Blinding b</th>
<th>Selective Reporting c</th>
<th>Follow-Up d</th>
<th>Power e</th>
<th>Statistical f</th>
</tr>
</thead>
</table>

ICE: standard ice packs; RCT: randomized controlled trial; ROM: range of motion.

¹Mild defined as “did not awaken” due to pain.

²Pain evaluated using a numeric rating scale ranging from 0, no pain, to 10, worst pain imaginable.
Combination Circulating Cooling and Compression (Cryopneumatic) Devices
Randomized Controlled Trials

In a multicenter RCT, Su et al (2012) compared 280 total knee arthroplasty patients treated with the Game Ready cryopneumatic device or with ice packs plus static compression (Tables 10 and 11). On hospital discharge, the treatments were given at the same application cycle of 1 hour on and 30 minutes off. Compliance rates were similar for the 2 groups. Blinded evaluation of 187 patients (67% of patients had complete evaluations) found no significant difference between the groups in visual analog score for pain, range of motion, 6-minute walk test, Timed Up & Go test, or knee girth under this more typical icing regimen. Narcotic consumption decreased from 680 to 509 mg morphine equivalents over the first 2 weeks (14 mg less per day), and patient satisfaction increased with the cryopneumatic device.

Waterman et al (2012) reported on a RCT of the Game Ready device in 36 patients who had anterior cruciate ligament reconstruction (Tables 10 and 11). Patients were instructed to use ice or the cryopneumatic device for 30 minutes at least 3 times a day and return to the clinic at 1, 2, and 6 weeks postoperatively. Compliance during the first 2 weeks did not differ significantly between groups (100% for Game Ready vs. 83% for icing). The primary outcome measure (visual analog pain score) differed at baseline, limiting interpretation of the results. There were no significant differences between the groups for knee circumference, the Lysholm Knee Score, 36-Item Short-Form Health Survey, or Single Assessment Numerical Evaluation scores. A greater percentage of patients treated with the Game Ready device discontinued narcotic use by 6 weeks (83% vs. 28%).

Table 10. Summary of Key RCT Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Su et al (2012)</td>
<td>U.S., Australia</td>
<td>11</td>
<td>NR</td>
<td>Patients with unilateral osteoarthritis</td>
<td>Cryopneumatic device (n=103)</td>
</tr>
<tr>
<td>Waterman et al (2012)</td>
<td>U.S.</td>
<td>1</td>
<td>NR</td>
<td>Patients undergoing anterior cruciate ligament reconstruction</td>
<td>Compressive cryotherapy (n=18)</td>
</tr>
</tbody>
</table>

ICE: standard ice packs; NR: not reported; RCT: Randomized controlled trials.
Table 11. Summary of Key RCT Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Decrease¹ in 6-Minute Walk Test at 2 and 6 Weeks Post-Surgery</th>
<th>Flexion at 2 and 6 Weeks Post-Surgery</th>
<th>Extension at 2 and 6 Weeks Post-Surgery</th>
<th>Discontinuation of Pain Medication at 6 wks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Su et al (2012)¹</td>
<td>-118.2m</td>
<td>-33.0</td>
<td>1.5</td>
<td>15/18 (83.3%) patients</td>
</tr>
<tr>
<td>ICE</td>
<td>-107.7m</td>
<td>-28.7</td>
<td>1.6</td>
<td>5/18 (27.8%) patients</td>
</tr>
<tr>
<td>Waterman et al (2012)¹⁰</td>
<td></td>
<td></td>
<td></td>
<td>p-value .0008</td>
</tr>
<tr>
<td>Device</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ICE: standard ice packs; RCT: randomized controlled trial

¹ Decrease from preoperative values.

Tables 12 and 13 summarize notable limitations identified in each study.

Table 12. Study Relevance Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Population ¹</th>
<th>Intervention ²</th>
<th>Comparator ³</th>
<th>Outcomes ⁴</th>
<th>Follow-Up ⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td>Su et al (2012)¹</td>
<td>3. Surgical patients had different surgeons using the implants of their choice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waterman et al (2012)¹⁰</td>
<td></td>
<td></td>
<td></td>
<td>5. Clinical significant difference not prespecified</td>
<td></td>
</tr>
</tbody>
</table>

¹ Population key: 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.

² Intervention key: 1. Not clearly defined; 2. Version used unclear; 3. Delivery not similar intensity as comparator; 4. Not the intervention of interest.

³ Comparator key: 1. Not clearly defined; 2. Not standard or optimal; 3. Delivery not similar intensity as intervention; 4. Not delivered effectively.

⁴ Outcomes key: 1. Key health outcomes not addressed; 2. Physiologic measures, not validated surrogates; 3. No CONSORT reporting of harms; 4. Not establish and validated measurements; 5. Clinical significant difference not prespecified; 6. Clinical significant difference not supported.

⁵ Follow-Up key: 1. Not sufficient duration for benefit; 2. Not sufficient duration for harms.

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

Table 13. Study Design and Conduct Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocation ⁶</th>
<th>Blinding ⁷</th>
<th>Selective Reporting ⁸</th>
<th>Follow-Up ⁹</th>
<th>Power ¹⁰</th>
<th>Statistical ¹¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Su et al (2012)¹</td>
<td>2. Allocation known by operating surgeon and patient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

⁹ Follow-Up key: 1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High
number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).

* Power key: 1. Power calculations not reported; 2. Power not calculated for primary outcome; 3. Power not based on clinically important difference.

\' Statistical key: 1. Intervention is not appropriate for outcome type: (a) continuous; (b) binary; (c) time to event; 2. Intervention is not appropriate for multiple observations per patient; 3. Confidence intervals and/or p values not reported; 4. Comparative treatment effects not calculated.

Nonrandomized Studies

Murgier et al (2017) conducted a prospective case-control study of the Game Ready device, comparing 43 individuals (27 men, 16 women) recovering from revision total knee arthroplasty; the control group (n=19) was treated with a cold pack applied intermittently (4 hours daily), while the Game Ready group was treated with 2, 8-hour cycles in 30-minute off-on increments.\(^{11}\) While the main outcome was the reduction of total blood loss, a secondary outcome was postoperative pain, as measured by visual analog score 3 days postsurgery. Patients using the Game Ready device showed decreased blood loss compared with the control group (260 mL vs. 465 mL; p<.05), as well as an improvement in postoperative pain (visual analog score, 1 vs. 3; p<0.05). Limitations included the possibility of a type II error due to the specialized surgical unit where the study was performed; additional limitations (e.g., variability of results, concerns about patients’ comorbidities) affected the study’s secondary outcomes. The authors concluded that, overall, the cryopneumatic device aided patients’ recovery from revision total knee arthroplasty but additional prospective randomized trials would be needed to confirm results.

Section Summary: Post-Knee Surgery

For individuals who have pain and/or swelling after knee surgery, the evidence includes several RCTs and a case-control study. Studies on manually operated passive noncirculating cooling devices were limited by the control condition used in the trials. Studies that used either a no-icing control or infrequent ice applications did not provide sufficient evidence of comparative efficacy. Other studies provided no information on the frequency of ice changes, limiting interpretation of the results. Randomized trials comparing active circulating cooling devices with standard intermittent icing or cold packs have had mixed results, with several studies reporting a significant reduction in medication use or other outcomes (e.g., pain, blood loss, swelling, range of motion) and others finding no significant improvements in outcomes. The results also differ across patient populations. A case-control study of the Game Ready device, which provides cooling and compression, found that the device decreased postoperative blood loss and reduced postoperative pain, compared with intermittent application of a cold pack. However, it is unclear whether constant cooling provides greater pain relief than standard icing or intermittent use of the device.

Cooling Device Post–Shoulder Surgery

Clinical Context and Therapy Purpose

The purpose of a cooling device is to provide a treatment option that is an alternative to or an improvement on existing therapies, such as a standard icing regimen, in patients with pain and/or swelling after shoulder surgery.

The following PICO was used to select literature to inform this review.

Populations
The relevant population of interest is individuals with pain and/or swelling after shoulder surgery.

Interventions
The therapy being considered is a cooling device.

Comparators
Comparators of interest include a standard icing regimen. Treatments include postoperative exercises, NSAIDs, and opioids.
Outcomes
The general outcomes of interest are symptoms, functional outcomes, medication use, and resource utilization.

The existing literature evaluating a cooling device as a treatment for pain and/or swelling after shoulder surgery has varying lengths of follow-up, ranging from 7 to 10 days. While studies described below all reported at least 1 outcome of interest, longer follow-up was necessary to fully observe outcomes. Therefore, 7 to 10 days of follow-up is considered necessary to demonstrate efficacy.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

1. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
2. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
3. To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
4. Studies with duplicative or overlapping populations were excluded.

Because studies that include the preferred comparator (standard icing regimen) are available, studies that use other comparators, such as no icing therapy or room temperature devices, were not evaluated in this evidence review.

Review of Evidence
Combination Circulating Cooling and Compression (Cryopneumatic) Devices

Randomized Controlled Trials
Kraeutler et al (2015) compared the Game Ready shoulder wrap with standard icing in a RCT of 46 patients who had undergone rotator cuff repair or subacromial decompression. The average age at the time of surgery was 55.4 years in the compressive cryotherapy intervention group (n=25) and 55.8 years in the control group (n=21). Patients were instructed to apply the cryotherapy every other hour for the first 3 days and 2 to 3 times a day until the follow-up visit at 7 to 10 days. In the immediate postoperative week (days 0 to 7), participants used diaries to document pain level using a visual analog score (no pain to extreme pain) twice per day. They also reported use of pain medication (converted to morphine equivalent dosage). Analysis of patient diaries showed no significant differences in average pain, worst pain, and morphine equivalent dosage between the 2 groups on any day during the week after surgery. Post hoc power analysis showed that 13 patients per group would provide sufficient power to detect a 25 mm (out of 100 mm) difference in visual analog scores between the 2 groups. Trial limitations included a small sample size (noting that 11 [19%] enrolled patients were excluded due to noncompliance), lack of blinding, potential recall bias due to the use of patient-reported diaries, and uncertainty whether the correct usage of cryotherapy was followed.

Noyes et al (2018) published a RCT comparing continuous cryotherapy (CC) (Polar Care) and standard ice packs (plain ice, ICE) as a means of improving postoperative pain control for patients undergoing a primary or revision shoulder arthroplasty procedure. Forty patients (20 in each group), 30 to 90 years of age, were randomly assigned to the 2 treatments. Visual analog pain scores were similar for both the CC and ICE groups preoperatively (5.9 vs. 6.8; p=.121) and postoperatively at 24 hours (4.2 vs. 4.3; p=.989), 3 days (4.8 vs. 4.7; p=.944), 7 days (2.9 vs. 3.3; p=.593), and 14 days (2.5 vs. 2.7; p=.742). Continuous cryotherapy and ICE did not differ significantly in the number of morphine equivalents of pain medication postoperatively at 24 hours (43 vs. 38 mg; p=.579), 3 days (149 vs. 116 mg; p=.201), 7 days (308 vs. 228 mg; p=.181), or 14 days (431 vs. 348 mg; p=.213). The visual analog score for quality of sleep was not different between CC and ICE postoperatively at 24 hours (5.1 vs. 4.3; p=.382), 3 days (5.1 vs. 5.3; p=.601), 7 days (6.0 vs. 6.7; p=.319), or 14 days (6.5 vs. 7.2; p=.348). The study was limited by...
patient compliance not being measured objectively, all patients receiving a single-shot interscalene block, and final outcomes not being evaluated.

Section Summary: Post–Shoulder Surgery
Two RCTs found that, for patients undergoing shoulder arthroscopy for rotator cuff repair or subacromial decompression, the use of compressive cryotherapy produced no significant reductions in pain or medication use compared with the standard ice wrap.

Cooling Devices Post–Facial Surgery
Clinical Context and Therapy Purpose
The purpose of a cooling device is to provide a treatment option that is an alternative to or an improvement on existing therapies, such as a standard icing regimen, in patients with pain and/or swelling after facial surgery.

The following PICO was used to select literature to inform this review.

Populations
The relevant population of interest is individuals with pain and/or swelling after facial surgery.

Interventions
The therapy being considered is a cooling device.

Comparators
Comparators of interest include a standard icing regimen. Treatments include postoperative exercises, NSAIDs, and opioids.

Outcomes
The general outcomes of interest are symptoms, functional outcomes, medication use, and resource utilization.

The existing literature evaluating a cooling device as a treatment for pain and/or swelling after facial surgery has varying lengths of follow-up, ranging from 1 to 6 weeks. While studies described below all reported at least 1 outcome of interest, longer follow-up was necessary to fully observe outcomes. Therefore, 1 to 6 weeks of follow-up is considered necessary to demonstrate efficacy.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

1. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
2. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
3. To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
4. Studies with duplicative or overlapping populations were excluded.

Because studies that include the preferred comparator (standard icing regimen) are available, studies that use other comparators, such as no icing therapy or room temperature devices, were not evaluated in this evidence review.
Review of Evidence
Circulating Cooling Devices

Randomized Controlled Trials
Several studies have been reported by a research group that compared the Hilotherm cooling mask device with cooling compresses. In a 2013 randomized trial, Rana et al assessed 32 patients with postoperative swelling of bilateral mandibular fractures using a cooling mask around the head and jaw.14 Swelling was reduced for the cooling mask group on days 1, 2, and 3 after surgery. Visual analog scores for pain were also reduced for the cooling mask group compared with compresses on day 1 (3.87 vs. 5.53) and day 2 (3.63 vs. 6.31). There were no significant differences between groups for a postoperative neurologic score, trismus, or mandibular dysfunction. Earlier research by Rana et al (2011) randomized 30 patients scheduled for third molar surgery to a water circulating cooling face mask (Hilotherm; n=15) or cool compresses (control, n=15).15 The intervention group had significantly less facial swelling (72.2 mL) relative to the control group (96.6 mL) on postoperative day 2 (p=.005). This trend was maintained at day 10 (intervention, 23.3 mL; control, 46.7 mL, p<.001). There was also a significantly lower pain score in the intervention group relative to the control group on both postoperative days 2 (intervention, 3.4; control, 4.8; p<.05) and 3 (intervention, 2.9; control, 3.7; p<.05). Both the intervention and the control groups had a significant decrease in the neurologic score on day 10 compared with day 2, but there were no significant differences between groups in the neurologic score. Compared with immediately after surgery, both groups had a significant increase in mouth opening on postoperative day 2. At postoperative day 28, there were no differences between the groups with regard to facial swelling, pain score, or neurologic score. The authors did not report study limitations. However, it should be noted the study had a small sample size and used observer-blinding only. In a 2011 pilot study, Rana et al found that the use of the cooling device in patients scheduled for treatment of bilateral mandibular fractures also reduced postoperative swelling and pain relative to the traditional cooling regimen.16 But there were no significant benefits with regard to mandible functioning, mouth opening, or neurologic scores.

A similar study design was reported by Modabber et al (2013), who treated 42 patients for unilateral zygomatic fractures.17 Patients were randomized to a water circulating continuous cooling face mask, the Hilotherm device (n=21), or conventional cooling (n=21) postoperatively. Three-dimensional optical scans were recorded postoperatively. On postoperative days 1, 2, and 3, respectively, there were significant decreases in swelling with the intervention relative to control (intervention, 9.45 mL; control, 20.69 mL; p<.001; intervention, 13.20 mL; control, 22.97 mL; p<.001; intervention, 14.44 mL; control, 23.52 mL; p=.002, respectively). This trend was maintained on day 7 (p=.019). After 28 days, there were no significant differences between groups. Pain analysis conducted using a visual analog score, ranging from 0 (no pain) to 10 (maximum pain), was reported before surgery and postoperatively. There were significant increases in pain in the control group relative to the intervention during postoperative day 1 (intervention, 2.38; control, 4.10; p=.001) and day 2 (intervention, 2.34; control, 4.38; p<.001). However, there were no significant differences in pain between groups by day 7. Nerve dysfunction, reported on a 9-point scale (9 being the worst) and assessed pre- and postoperatively, showed a significant reduction in the neurologic score in the intervention group (2.57) relative to the control (3.90) at day 1 (p=.008), with no significant differences between the groups at days 7, 28, and 90 postoperatively. On postoperative day 1, there was a significant (p=.050) reduction in eye motility limitation in the intervention group (n=17 with no limitation; n=4 with limitation) relative to the control (n=11 with no limitation; n=10 with limitation). There were also significantly fewer patients in the intervention group with diplopia (n=18 without diplopia, n=3 with diplopia) compared with the control group (n=11 without diplopia, n=10 with diplopia; p=.019). There were no statistically significant differences in eye motility limitation or diplopia between the groups on days 7 and 28. Overall patient satisfaction was significantly higher in the intervention group (1.43) relative to the control (2.29; p<.001). In addition to the small sample size, trial limitations included observer-only blinding and 3-dimensional optical scans that only measured localized facial swelling.
Section Summary: Post-Facial Surgery

Several small RCTs and a pilot study of patients receiving cooling therapy found significant decreases in facial swelling and pain. However, there were mixed results in terms of the intervention’s efficacy in reducing neurologic problems as well as improving eye motility, diplopia, mandible functioning, and mouth opening compared with conventional cooling regimens. Several of the trials had observer-only blinding.

Supplemental Information

The purpose of the following information is to provide reference material. Inclusion does not imply endorsement or alignment with the evidence review conclusions.

Clinical Input From Physician Specialty Societies and Academic Medical Centers

While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

2008 Input

In response to requests, input was received from 3 specialty societies and 3 academic medical centers while the policy was under review in 2008. Input was mixed regarding the medical necessity of continuous cooling devices.

Practice Guidelines and Position Statements

Guidelines or position statements will be considered for inclusion in ‘Supplemental Information’ if they were issued by, or jointly by, a US professional society, an international society with US representation, or National Institute for Health and Care Excellence (NICE). Priority will be given to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.

American Academy of Orthopaedic Surgeons

In 2016, the American Academy of Orthopaedic Surgeons released guidelines on the surgical management of osteoarthritis of the knee after knee arthroplasty.¹⁸ They state, “Moderate evidence supports that the use of cryotherapy devices after knee arthroscopy do not improve outcomes.”

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials

Some currently ongoing and unpublished trials that might influence this review are listed in Table 14.

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT04185064*</td>
<td>Randomized-Controlled Trial and Evaluation Cohort Study of Patients Using a Cryopneumatic Device After Open or Arthroscopic Shoulder Surgeries</td>
<td>250</td>
<td>Dec 2021 (recruiting)</td>
</tr>
<tr>
<td>NCT05095909</td>
<td>Utility of Intermittent Cryo-Compression Versus Traditional Icing Following Arthroscopic Rotator Cuff Repair</td>
<td>100</td>
<td>June 2024</td>
</tr>
</tbody>
</table>
References

Documentation for Clinical Review

- No records required

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy.

The following codes are included below for informational purposes. Inclusion or exclusion of a code(s) does not constitute or imply member coverage or provider reimbursement policy. Policy Statements are intended to provide member coverage information and may include the use of some codes for clarity. The Policy Guidelines section may also provide additional information for how to interpret the Policy Statements and to provide coding guidance in some cases.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>E0218</td>
<td>Fluid circulating cold pad with pump, any type</td>
</tr>
<tr>
<td></td>
<td>E0236</td>
<td>Pump for water circulating pad</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/31/2015</td>
<td>BCBSA Medical Policy adoption</td>
</tr>
<tr>
<td>12/01/2016</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>12/01/2017</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>05/01/2018</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>02/01/2019</td>
<td>Coding update</td>
</tr>
<tr>
<td>06/01/2019</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>06/01/2023</td>
<td>Policy reactivated. Previously archived from 06/01/2020 to 05/31/2023.</td>
</tr>
</tbody>
</table>
Definitions of Decision Determinations

Medically Necessary: Services that are Medically Necessary include only those which have been established as safe and effective, are furnished under generally accepted professional standards to treat illness, injury or medical condition, and which, as determined by Blue Shield, are: (a) consistent with Blue Shield medical policy; (b) consistent with the symptoms or diagnosis; (c) not furnished primarily for the convenience of the patient, the attending Physician or other provider; (d) furnished at the most appropriate level which can be provided safely and effectively to the patient; and (e) not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of the Member’s illness, injury, or disease.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements and Feedback (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member’s health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member’s eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department at (800) 541-6652, or the Transplant Case Management Department at (800) 637-2066 ext. 3507708 or visit the provider portal at www.blueshieldca.com/provider.

We are interested in receiving feedback relative to developing, adopting, and reviewing criteria for medical policy. Any licensed practitioner who is contracted with Blue Shield of California or Blue Shield of California Promise Health Plan is welcome to provide comments, suggestions, or concerns. Our internal policy committees will receive and take your comments into consideration.

For utilization and medical policy feedback, please send comments to: MedPolicy@blueshieldca.com

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.
Reactivated Policy

Policy Statement:
N/A

<table>
<thead>
<tr>
<th>BEFORE</th>
<th>AFTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactivated Policy</td>
<td>Cooling Devices Used in the Outpatient Setting 1.01.26</td>
</tr>
</tbody>
</table>

Policy Statement:

1. Circulating and noncirculating cooling devices are considered *investigational*.

2. Combination circulating cooling and compression (cryopneumatic) devices are considered *investigational*.