Policy Statement

Use of confocal laser endomicroscopy is considered investigative.

Policy Guidelines

Coding

The following CPT codes are specific for the use of this technology in upper gastrointestinal endoscopy:

- **43206**: Esophagoscopy, flexible, transoral; with optical endomicroscopy
- **43252**: Esophagastroduodenoscopy, flexible, transoral; with optical endomicroscopy

The interpretation and report of optical endomicroscopic image(s) would be reported with the following CPT code:

- **88375**: Optical endomicroscopic image(s), interpretation and report, real-time or referred, each endoscopic session

Note: Code 88375 cannot be reported in conjunction with codes 43206 and 43252.

The following CPT category III code is for the use of this technology with an endoscopic exam of the biliary tract and/or pancreas:

- **0397T**: Endoscopic retrograde cholangiopancreatography (ERCP), with optical endomicroscopy (List separately in addition to code for primary procedure)

Description

Confocal laser endomicroscopy (CLE), also known as confocal fluorescent endomicroscopy and optical endomicroscopy, allows in vivo microscopic imaging of cells during endoscopy. CLE is proposed for a variety of purposes, especially as a real-time alternative to biopsy/polypectomy and histopathologic analysis during colonoscopy and for targeting areas to undergo biopsy in patients with inflammatory bowel disease or Barrett esophagus.

Related Policies

- Chromoendoscopy as an Adjunct to Colonoscopy
- Endoscopic Radiofrequency Ablation or Cryoablation for Barrett Esophagus
- Virtual Colonoscopy/Computed Tomography Colonography

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.
Regulatory Status

Two CLE devices have been cleared for marketing by the FDA through the 510(k) process.

Cellvizio® (Mauna Kea Technologies) is a confocal microscopy with a fiber optic probe (i.e., a probe-based CLE system). The device consists of a laser scanning unit, proprietary software, a flat-panel display, and miniaturized fiber optic probes. The F-600 system, cleared by the FDA in 2006, can be used with any standard endoscope with a working channel of at least 2.8 mm. According to the FDA, the device is intended for imaging the internal microstructure of tissues in the anatomic tract (gastrointestinal or respiratory) that are accessed by an endoscope. The 100 series version of the system was cleared by the FDA in 2015 for imaging the internal microstructure of tissues and for visualization of body cavities organs and canals during endoscopic and laparoscopic surgery. In 2018, the CranioFlex™ Confocal Miniprobe (Mauna Kea Technologies) was cleared to “provide visualization within central nervous system during cranial diagnostic and therapeutic procedures such as tumor biopsy and resection.” FDA product codes: GCJ, GWG, OWN.

Confocal Video Colonoscope (Pentax Medical) is an endoscopy-based CLE system. The EC-3570CILK system, cleared by the FDA in 2004, is used with a Pentax Video Processor and with a Pentax Confocal Laser System. According to the FDA, the device is intended to provide optical and microscopic visualization of and therapeutic access to the lower gastrointestinal tract.

FDA product code: GCJ/OWN (endoscope and accessories).

Table 1. Endomicroscopy Devices Cleared by the US Food and Drug Administration

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Date Cleared</th>
<th>510(k) No.</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellvizio 100 Series Confocal Laser Imaging Systems and Their Confocal Miniprobes</td>
<td>Mauna Kea Technologies</td>
<td>02/22/2019</td>
<td>K183640</td>
<td>For use in endomicroscopy</td>
</tr>
<tr>
<td>Ec-3870cilk, Confocal Video Colonoscope</td>
<td>Pentax Medical Company</td>
<td>10/19/2004</td>
<td>K042741</td>
<td>For use in endomicroscopy</td>
</tr>
</tbody>
</table>

Rationale

Background

Confocal laser endomicroscopy (CLE), also known as confocal fluorescent endomicroscopy and optical endomicroscopy, allows in vivo microscopic imaging of the mucosal epithelium during endoscopy. The process uses light from a low-power laser to illuminate tissue and, subsequently, the same lens detects light reflected from the tissue through a pinhole. The term confocal refers to having both illumination and collection systems in the same focal plane. Light reflected and scattered at other geometric angles that are not reflected through the pinhole is excluded from detection, which dramatically increases the resolution of CLE images.

To date, two CLE systems have been cleared by the U.S. Food and Drug Administration (FDA). One is an endoscope-based system with a confocal probe incorporated onto the tip of a conventional endoscope. The other is a probe-based system; the probe is placed through the biopsy channel of a conventional endoscope. The depth of view is up to 250 μm with the endoscopic system and about 120 mm with the probe-based system. A limited area can be examined-no more than 700 μm in the endoscopic-based system and less with the probe-based system. As pointed out in systematic reviews, the limited viewing area emphasizes the need for careful conventional endoscopy to target areas for evaluation. Both CLE systems are optimized using a contrast agent. The most widely used agent is intravenous fluorescein, which is FDA-approved for ophthalmologic imaging of blood vessels when used with a laser scanning ophthalmoscope.
Unlike techniques such as chromoendoscopy (see Blue Shield of California Medical Policy: Chromoendoscopy as an Adjunct to Colonoscopy), which are primarily intended to improve the sensitivity of colonoscopy, CLE is unique in that it is designed to characterize the cellular structure of lesions immediately. CLE can thus potentially be used to make a diagnosis of polyp histology, particularly in association with screening or surveillance colonoscopy, which could allow for small hyperplastic lesions to be overlooked rather than removed and sent for histologic evaluation. Using CLE would reduce risks associated with biopsy and reduce the number of biopsies and histologic evaluations.

Another potential application of CLE technology is targeting areas for biopsy in patients with Barrett esophagus undergoing surveillance endoscopy. This alternative to the current standard approach, recommended by the American Gastroenterological Association, is that patients with Barrett esophagus who do not have dysplasia undergo endoscopic surveillance every three to five years.1 The American Gastroenterological Association has further recommended that random 4-quadrant biopsies every 2 cm be taken with white-light endoscopy in patients without known dysplasia.

Other potential uses of CLE under investigation include better diagnosis and differentiation of conditions such as gastric metaplasia, lung cancer, and bladder cancer.

As noted, limitations of CLE systems include a limited viewing area and depth of view. Another issue is the standardization of systems for classifying lesions viewed with CLE devices. Although there is currently no internationally accepted classification system for colorectal lesions, two systems have been used in a number of studies conducted in different countries. They are the Mainz criteria for endoscopy-based CLE devices and the Miami classification system for probe-based CLE devices.2 Lesion classification systems are less developed for non-gastrointestinal lesions viewed by CLE devices (e.g., those in the lung or bladder). Another challenge is the learning curve for obtaining high-quality images and interpreting them accurately can be learned relatively quickly; these studies were specific to colorectal applications of CLE.3,4.

Literature Review

Evidence reviews assess whether a medical test is clinically useful. A useful test provides information to make a clinical management decision that improves the net health outcome. That is, the balance of benefits and harms is better when the test is used to manage the condition than when another test or no test is used to manage the condition.

The first step in assessing a medical test is to formulate the clinical context and purpose of the test. The test must be technically reliable, clinically valid, and clinically useful for that purpose. Evidence reviews assess the evidence on whether a test is clinically valid and clinically useful. Technical reliability is outside the scope of these reviews, and credible information on technical reliability is available from other sources.

Colorectal Lesions

Clinical Context and Test Purpose

The purpose of confocal laser endomicroscopy (CLE) scanning in patients with suspected or known colorectal lesions is to provide a real-time alternative to histology and assist in targeting areas for biopsy.

The question addressed in this evidence review is: Does the use of CLE improve the net health outcome in individuals with suspected or known colorectal lesions?

The following PICOs were used to select literature to inform this review.
Patients
The populations of interest are patients with suspected or known colorectal lesions.

Interventions
The intervention of interest is CLE, which would be administered in a facility equipped with an endomicroscope.

Comparators
The following tools and practices are currently being used to diagnose the following conditions: white-light colonoscopy alone or alternative adjunctive diagnostic aids.

Outcomes
The outcomes of interest include overall survival (OS), disease-specific survival, test validity, and resource utilization.

The timing of CLE would be during the disease confirmation process. For patients with gastrointestinal lesions following endoscopic treatment, the timing would be following endoscopic treatment.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires a review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Study Selection Criteria
For the evaluation of the clinical validity of this test, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
- Included a suitable reference standard (describe the reference standard)
- Patient/sample clinical characteristics were described
- Patient/sample selection criteria were described.

Systematic Reviews
Several systematic reviews have compared the diagnostic accuracy of CLE with a reference standard. Su et al (2013) reviewed studies on the efficacy of CLE for discriminating colorectal neoplasms from non-neoplasms. To be included in the review, studies had to use histologic biopsy as the reference standard, and the pathologist and endoscopist had to be blinded to each other's findings. Selected studies also had to use a standardized CLE classification system. Patients had to be at increased risk of colorectal cancer (CRC) due to personal or family history, have previously identified polyps, and/or have inflammatory bowel disease. Two reviewers independently assessed the quality of individual studies using the modified Quality Assessment of Diagnostic Accuracy Studies tool, and studies considered at high risk of bias were excluded from further consideration.

Fifteen studies (total N=719 adults) were selected. All were single-center trials, and 2 were available only as abstracts. In all studies, suspicious lesions were first identified by conventional white-light endoscopy with or without chromoendoscopy and then further examined by CLE. Meta-analysis of the 15 studies found an overall sensitivity for CLE of 94% (95% confidence interval [CI], 88% to 97%) and a specificity of 95% (95% CI, 89% to 97%) compared with histology. Six studies included patients at increased risk of CRC who were undergoing surveillance.
endoscopy; five studies included patients with colorectal polyps and four studies included patients with inflammatory bowel disease. In a predefined subgroup analysis by indication for screening, the pooled sensitivity and specificity for surveillance studies were 94% (95% CI, 90% to 97%) and 98% (95% CI, 97% to 99%), respectively. For patients presenting with colorectal polyps, the pooled sensitivity of CLE was 91% (95% CI, 87% to 94%) and the specificity was 85% (95% CI, 78% to 90%). For patients with inflammatory bowel disease, the pooled sensitivity was 83% (95% CI, 70% to 92%) and the specificity was 90% (95% CI, 87% to 93%). In other predefined subgroup analyses, the summary sensitivity and specificity were significantly higher (p<0.001) in studies of endoscopy-based CLE (97% and 99%, respectively) than in studies of probe-based CLE (87% and 82% respectively). In addition, the summary sensitivity and specificity were significantly higher (p<0.01) with real-time CLE in which the macroscopic endoscopy findings were known (96% and 97% respectively) than in blinded CLE in which recorded confocal images were subsequently analyzed without knowledge of macroscopic endoscopy findings (85% and 82% respectively).

A systematic review by Dong et al (2013) included studies that compared the diagnostic accuracy of CLE with conventional endoscopy.6 Reviewers did not explicitly state that the reference standard was a histologic biopsy, but this was the implied reference standard. Six studies were included in a meta-analysis. All were prospective, and at least five included blinded interpretation of CLE findings (in one study, it was unclear whether the interpretation was blinded). In a pooled analysis of data from all 6 studies, the sensitivity was 81% (95% CI, 77% to 85%) and the specificity was 88% (95% CI, 85% to 90%). Reviewers also conducted a subgroup analysis by type of CLE used. When findings from the 2 studies on endoscopy-based CLE were pooled, the sensitivity was 82% (95% CI, 69% to 91%) and the specificity was 94% (95% CI, 91% to 96%). Two studies may not have been sufficient to obtain a reliable estimate of diagnostic accuracy. When findings from the 4 studies on probe-based endoscopy were pooled, the sensitivity was 81% (95% CI, 76% to 85%) and the specificity was 75% (95% CI, 69% to 81%).

A meta-analysis by Wanders et al (2013) searched for studies that reported on the diagnostic accuracy of several new technologies used to differentiate between colorectal neoplasms and non-neoplasms.7 To be selected, studies had to use the technology to differentiate between non-neoplastic and neoplastic lesions and to use histopathology as the reference standard. Blinding was not an inclusion criterion. Eleven eligible studies included an analysis of CLE. Meta-analysis yielded an estimated sensitivity of 93.3% (95% CI, 88.4% to 96.2%) and a specificity of 89.9% (95% CI, 81.8% to 94.6%). Meta-analysis limited to the 5 studies that used endoscopy-based CLE found a sensitivity of 94.8% (95% CI, 90.6% to 98.92%) and a specificity of 94.4% (95% CI, 90.7% to 99.2%). When findings of the 6 probe-based CLE studies were pooled, the sensitivity was 91.5% (95% CI, 86.0% to 97.0%) and specificity was 80.9 (95% CI, 69.4% to 92.4%).

Observational Studies

A study by Xie et al (2011) in China included 116 consecutive patients who had polyps found during CLE (1 patient was excluded from the analysis).8 All patients had an indication for colonoscopy (19 were undergoing surveillance after polypectomy, 2 had a family history of CRC, 3 had inflammatory bowel disease, 91 were seeking a diagnosis). All patients first underwent white-light colonoscopy. Endoscopy-based CLE was used on the first polyp identified during withdrawal of the endoscope (i.e., one polyp per patient was analyzed). Real-time diagnosis of the polyp was performed based on criteria used at the study center (adapted from the Mainz classification system). The polyps were biopsied or removed, and histopathologic diagnosis was determined. Real-time CLE diagnosis correctly identified 109 (95%) of 115 adenomas or hyperplastic polyps. Four adenomas were misdiagnosed by CLE as hyperplastic polyps (two were tubulous adenomas, two were tubulovillous adenomas) and two hyperplastic polyps were misdiagnosed as adenomas. The overall sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of CLE diagnosis were 93.9% (95% CI, 85.4% to 97.6%), 95.9% (95% CI, 86.2% to 98.9%), 96.9% (95% CI, 89% to 99%), and 94.8% (95% CI, 89.1% to 97.6%), respectively. For polyps less than 10 mm in size, CLE diagnosis had a sensitivity of 90.3% and a specificity of 95.7% for polyps 10 mm or larger, sensitivity was 97.1% and specificity was 100%.
Buchner et al (2010) published findings on 75 patients who had a total of 119 polyps. Patients were eligible for participation if they were undergoing surveillance or screening colonoscopy or undergoing evaluation of known or suspected polyps identified by other imaging modalities or endoscopic resection of larger flat colorectal neoplasia. White-light colonoscopy was used as the primary screening method. When a suspicious lesion was identified, it was evaluated by virtual chromoendoscopy and a probe-based CLE system. After the imaging techniques, the appropriate intervention (i.e., polypectomy, biopsy, endoscopic mucosal resection) was performed, and all resected specimens underwent histopathologic analysis by a pathologist blinded to CLE information. Confocal images of the 199 polyps were evaluated after all procedures were completed; the evaluator was blinded to the histology diagnosis and the endoscopic appearance of the lesion. Diagnosis of confocal images used modified Mainz criteria; polyps were classified as benign or neoplastic. According to histopathologic analysis, there were 38 hyperplastic polyps and 81 neoplastic lesions. CLE correctly identified 74 of 81 neoplastic polyps (sensitivity, 91% 95% CI, 83% to 96%). In addition, CLE correctly identified 29 of 38 hyperplastic polyps (specificity, 76% 95% CI, 60% to 89%). In contrast, virtual chromoendoscopy correctly identified 62 neoplastic polyps (sensitivity, 77% 95% CI, 66% to 85%) and 27 hyperplastic polyps (specificity, 71% 95% CI, 54% to 85%).

Another study from the same academic medical center as Buchner et al (2010) was published by Shadid et al (2012). The study compared two methods of analyzing CLE images: real-time diagnosis and blinded review of video images after endoscopy (known as "offline" diagnosis). The study included 74 patients with 154 colorectal lesions. Eligibility criteria were similar to the Buchner et al (2010) study (previously discussed)—selected patients were undergoing surveillance or screening colonoscopy. Patients had a white-light colonoscopy, and identified polyps were also evaluated with virtual chromoendoscopy and probe-based CLE. At the examination, an endoscopist made a real-time diagnosis based on CLE images. Based on that diagnosis, the patient underwent polypectomy, biopsy, or endoscopic mucosal resection, and histopathologic analysis was done on the specimens. CLE images were deidentified and reviewed offline by the same endoscopist at least one month later. In the second review, the endoscopist was blinded to the endoscopic and histopathologic diagnosis. Of the 154 polyps, 74 were found by histopathologic analysis to be non-neoplastic, and 80 were neoplastic (63 tubular adenomas, 12 tubulovillous adenomas, 3 mixed hyperplastic-adenoma polyps, 2 adenocarcinomas). Overall, there was no statistically significant difference in the diagnostic accuracy between real-time CLE diagnosis and blinded offline CLE diagnosis (i.e., CIs overlapped). The sensitivity, specificity, PPV, and NPV for real-time CLE diagnosis were 81%, 76%, 87% and 79% respectively. For offline diagnosis, these values were 88%, 77%, 81% and 85% respectively. For larger polyps, there was a nonsignificant trend in favor of better diagnostic accuracy with real-time compared with offline CLE. However, in the subgroup of 107 smaller polyps (<10 mm in size), the accuracy of real-time CLE was significantly less than offline CLE. For smaller polyps, the sensitivity, specificity, PPV, and NPV of real-time CLE were 71%, 83%, 78%, and 78% respectively; for offline CLE, they were 86%, 78%, 76%, and 87% respectively.

A study by Hlavaty et al (2011) included patients with ulcerative colitis or Crohn disease. Thirty patients were examined with standard white-light colonoscopy, chromoendoscopy, and an endoscopy-based CLE system. Another 15 patients were examined only with standard colonoscopy. All lesions identified by white-light colonoscopy or chromoendoscopy were examined using CLE to identify neoplasia using the Mainz classification system. Suspicious lesions were biopsied, and random biopsies were taken from four quadrants every 10 cm per the standard surveillance colonoscopy protocol. All specimens underwent histologic analysis by a gastrointestinal pathologist blinded to a CLE diagnosis. Diagnostic accuracy of CLE was calculated for examinable lesions only. Compared with histologic diagnosis, the sensitivity of CLE for diagnosing low-grade and high-grade intraepithelial neoplasia was 100%, specificity was 98.4%, PPV was 66.7%, and NPV was 100%. However, whereas CLE was able to examine 28 (93%) of 30 flat lesions, it could examine only 40 (57%) of 70 protruding polyps. Moreover, 6 (60%) of 10 dysplastic lesions, including 3 of 5 low-grade and high-grade intraepithelial neoplasms, were not
evaluate by CLE. It is also worth noting that the diagnostic accuracy of chromoendoscopy (see Blue Shield of California Medical Policy: Chromoendoscopy as an Adjunct to Colonoscopy) is similar to that of CLE. The sensitivity, specificity, PPV, and NPV of chromoendoscopy were 100%, 97.9%, 75%, and 100%, respectively.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials (RCTs).

In patients at average risk of CRC, no RCTs or nonrandomized comparative studies were identified that evaluated the impact of CLE on the subsequent development of CRC or on CRC mortality.

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

It is not clear that the diagnostic performance of this technology is sufficient to obviate the need for biopsy of identified polyp lesions. Thus, there is insufficient evidence to support a chain of evidence to demonstrate an improvement in net health outcome.

Section Summary: Colorectal Lesions
Multiple studies have compared the accuracy of CLE with the histopathology for diagnosing colorectal lesions. In 3 published systematic reviews, pooled estimates of overall sensitivity of CLE ranged from 81% to 94% and pooled estimates of the specificity ranged from 88% to 95%. Although the reported diagnostic accuracy tended to be relatively high, it is unclear whether the accuracy is high enough to replace biopsy/polypectomy and histologic analysis. Moreover, there are no controlled studies on the impact of using CLE on CRC incidence or mortality, and the available evidence is insufficient to support a chain of evidence.

Barrett Esophagus
This section addresses whether CLE can distinguish Barrett esophagus (BE) without dysplasia from BE with low- and high-grade dysplasia (HGD) and/or lead to fewer biopsies of benign tissue compared with surveillance with random biopsies. The ideal study to answer this question would include an unselected clinical population of patients with BE presenting for surveillance and would randomize patients to CLE with targeted biopsy or a standard biopsy protocol without CLE.

Clinical Context and Test Purpose
This section addresses whether CLE can distinguish BE without dysplasia from BE with low- and high-grade dysplasia (HGD) and/or lead to fewer biopsies of benign tissue compared with surveillance with random biopsies.

The purpose of CLE scanning in patients with BE who are undergoing surveillance is to provide a real-time alternative to histology and assist in targeting areas for biopsy.

The question addressed in this evidence review is: Does the use of CLE improve the net health outcome in individuals with BE who are undergoing surveillance?
The following PICOs were used to select literature to inform this review.

Patients
The populations of interest are patients with BE undergoing surveillance.

Interventions
The intervention of interest is CLE, which would be administered in a facility equipped with an endomicroscope.

Comparators
The following tools and practices are currently being used for BE undergoing surveillance: standard endoscopy with random biopsy.

Outcomes
The outcomes of interest include OS, disease-specific survival, test validity, and resource utilization. The timing of CLE would be during the disease confirmation process and every three months to every three years, depending on whether dysplasia found and, if so, what grade.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse). The ideal study to answer this question would include an unselected clinical population of patients with BE presenting for surveillance and would randomize patients to CLE with targeted biopsy or a standard biopsy protocol without CLE.

Study Selection Criteria
For the evaluation of the clinical validity of this test, studies were considered that meet the eligibility criteria described in the first indication.

Systematic Reviews
Xiong et al (2016) published a meta-analysis of prospective studies evaluating the diagnostic accuracy of CLE in patients with BE, using histopathologic analysis as the criterion standard. Studies were not required to compare CLE with standard 4-quadrant biopsy. Fourteen studies were included. In a pooled analysis 7 studies (n=473 patients) reporting a per-patient analysis, the sensitivity of CLE for detecting neoplasia was 89% (95% CI, 82% to 94%) and the specificity was 83% (95% CI, 78% to 86%). The pooled positive and negative likelihood ratios were 6.53 (95% CI, 3.12 to 13.4) and 0.17 (95% CI, 0.11 to 0.29), respectively. Reviewers did not report PPV or NPV. Moreover, they provided estimates of pretest probability to aid in the interpretation of the likelihood ratios (i.e., to evaluate a person’s risk level before and after getting the test). Sensitivity and specificity were similar to those calculated in the Gupta systematic review (discussed below).

Gupta et al (2014) published a systematic review and meta-analysis of prospective studies comparing the accuracy of CLE plus targeted biopsy with standard 4-quadrant biopsy in patients with BE. Reviewers noted that, according to the Preservation and Incorporation of Valuable Endoscopic Innovation Initiative of the American Society of Gastrointestinal Endoscopy, in order to replace the standard Seattle protocol, an alternative approach would need to have a per-patient sensitivity of at least 90%, specificity of at least 80%, and NPV of at least 98% for detecting HGD or esophageal adenocarcinoma compared with the current protocol.

Eight studies published through May 2014 met inclusion criteria; 1 was a parallel-group RCT, and 1 was a randomized crossover study. The other six were single- or double-blind nonrandomized comparative studies. Seven studies had data suitable for pooling on a per-lesion basis; together they included 345 patients and 3080 lesions. In a meta-analysis of the diagnosis of HGD or esophageal adenocarcinoma, the pooled sensitivity was 68% (95% CI, 64% to 73%) and
pooled specificity was 88% (95% CI, 87% to 89%). Four studies were included in the per-patient meta-analysis. The pooled sensitivity and specificity were 86% (95% CI, 74% to 96%) and 83% (95% CI, 77% to 88%), respectively. NPV (calculated using the sensitivity, specificity, and overall prevalence) was 96%. Thus, according to the criteria in the Preservation and Incorporation of Valuable Endoscopic Innovation Initiative, the diagnostic accuracy of CLE in the studies evaluated was not sufficiently high for this technique to replace the standard Seattle protocol. HGD and esophageal adenocarcinoma rates were much higher in the studies included in the meta-analysis than is generally seen in clinical practice and therefore diagnostic accuracy results should be interpreted cautiously.

Randomized Controlled Trials

The single RCT in a systematic review by Ypsilantis et al (2015; discussed further in indication 3, gastrointestinal lesions) was published by Wallace et al (2012). This multicenter trial included patients with BE who were undergoing ablation. After an initial attempt at ablation, patients were randomized to follow-up with high-definition white-light endoscopy or high-definition white-light endoscopy plus CLE. The primary outcome was the proportion of optimally treated patients, defined as those with no evidence of disease at follow-up, and those with residual disease who were identified and treated. Trial enrollment was halted after an interim analysis showed no difference between groups and higher than expected residual BE in both arms. Among the 119 patients enrolled at the interim analysis, 15 (26%) of 57 in the high-definition white-light endoscopy group and 17 (27%) of 62 in the high-definition white-light endoscopy plus CLE group were optimally treated; the difference was not statistically significant. Moreover, other outcomes were similar in the two groups.

Canto et al (2014) reported on a single-blind, multicenter trial conducted at academic centers with experienced endoscopists. It included consecutive patients undergoing endoscopy for routine BE surveillance or for suspected or known neoplasia. Patients were randomized to high-definition white-light endoscopy with random biopsy (n=98) or white-light endoscopy with endoscopy-based CLE and targeted biopsy (n=94). In the white-light endoscopy-only group, 4-quadrant random biopsies were taken every 1 to 2 cm over the entire length of the BE for patients undergoing surveillance and every 1 cm for patients with suspected neoplasia. In the CLE group, biopsy specimens were obtained only when there was CLE evidence of neoplasia. Final pathologic diagnosis was the reference standard. A per-patient analysis of diagnostic accuracy for diagnosing BE-related neoplasia found a sensitivity of 40% with white-light endoscopy only and 95% with white-light endoscopy plus CLE. Specificity was 98% with white-light endoscopy only and 92% with white-light endoscopy plus CLE. When the analysis was done on a per-biopsy specimen basis and when CLE was added, sensitivity was substantially higher, and specificity was slightly lower. The median number of biopsies per patient was significantly higher in the white-light endoscopy group (n=4) compared with the CLE group (n=2; p<0.001).

The investigators analyzed the number of cases in which CLE resulted in a different diagnosis. Thirty-two (34%) of 94 patients in the white-light plus CLE group had a correct change in dysplasia grade after CLE compared with initial endoscopic findings. Six (19%) of the 32 patients had lesions, and the remaining 26 did not. In 21 of the 26 patients without lesions, CLE changed the plan from biopsy to no biopsy. The remaining 62 (65%) of 94 patients in the white-light endoscopy plus CLE group had concordant diagnoses with both techniques. Because the trial was conducted at academic centers and used endoscopy-based CLE, findings may not be generalizable to other clinical settings or to probe-based CLE.

Sharma et al (2011) published an international, multicenter RCT that included 122 consecutive patients presenting for surveillance of BE or endoscopic treatment of HGD or early carcinoma. Patients were randomized to both standard white-light endoscopy and narrow-band imaging. Following these two examinations, done in a blinded fashion, the location of lesions was unblinded and, subsequently, all patients underwent probe-based CLE. All examinations involved a presumptive diagnosis of suspicious lesions. Also, in both groups, after all evaluations
were performed, all suspicious lesions were biopsied, as well as random locations (four quadrants every 2 cm). The histopathologic analysis was the reference standard. Twenty-one patients were excluded from the analysis. Of the remaining 101 patients, 66 (65%) were found on histopathologic analysis to have no dysplasia, 4 (4%) had low-grade dysplasia, 6 (6%) had HGD, and 25 (25%) had early carcinoma. Sensitivity of CLE plus white-light endoscopy for detecting HGD or early carcinoma was 68.3% (95% CI, 60.0% to 76.7%), which was significantly higher than white-light endoscopy alone (34.2% 95% CI, 25.7% to 42.7%; p=0.002). However, specificity of CLE plus white-light endoscopy was significantly lower (87.8% 95% CI, 85.5% to 90.1%) than white-light endoscopy alone (92.7% 95% CI, 90.8% to 94.6% p<0.001). For white-light endoscopy alone, the PPV was 42.7% (95% CI, 32.8% to 52.6%) and NPV was 89.8% (95% CI, 87.7% to 92.0%). For white-light endoscopy with probe-based CLE, the PPV was 47.1% (95% CI, 39.7% to 54.5%) and NPV was 94.6% (95% CI, 92.9% to 96.2%). White-light endoscopy alone missed 79 (66%) of 120 areas with HGD or early carcinoma, and white-light endoscopy plus CLE missed 38 (32%) areas. On a per-patient basis, 31 patients were diagnosed with HGD or early carcinoma. White-light endoscopy alone failed to identify 4 of these patients (sensitivity, 87%), whereas white-light endoscopy plus CLE failed to identify 2 patients (sensitivity, 93.5%).

A single-center crossover RCT was published by Dunbar et al (2009).19 Forty-six patients with BE were enrolled, and 39 (95%) completed the study protocol. Of these, 23 were undergoing BE surveillance, and 16 had BE with suspected neoplasia. All patients received endoscopy-based CLE and standard endoscopy, in random order. One endoscopist performed all CLE procedures, and another endoscopist performed all standard endoscopy procedures; endoscopists were blinded to the finding of the other procedure. During the standard endoscopy procedure, biopsies were taken of any discrete lesions followed by 4-quadrant random biopsy (every 1 cm for suspected neoplasia, every 2 cm for BE surveillance). During the CLE procedure, only lesions suspicious of neoplasia were biopsied. Endoscopists interpreted CLE images using the Confocal Barrett’s Classification system, developed in a previous research study. Histopathologic analysis was the reference standard. Among the 16 study completers with suspected high-risk dysplasia, there were significantly fewer biopsies per patient with CLE (mean, 9.8 biopsies per patient) than with standard endoscopy (mean, 23.9 biopsies per patient; p=0.002). Although there were fewer biopsies, the mean number of biopsy specimens showing HGD or cancer was similar in the two groups (3.1 during CLE vs 3.7 during standard endoscopy). The diagnostic yield for neoplasia was 33.7% with CLE and 17.2% with standard endoscopy. None of the 23 patients undergoing BE for surveillance had HGD or cancer. The mean number of mucosal specimens obtained for patients in this group was 12.6 with white-light endoscopy and 1.7 with CLE (p<0.001).

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs.

No RCTs assessing the clinical utility of CLE to distinguish BE without dysplasia from BE with low-grade dysplasia or HGD were identified.

Chain of Evidence

Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.
Because the clinical validity of CLE has not been established for this indication, a chain of evidence cannot be constructed.

Section Summary: BE

Several RCTs and nonrandomized comparative studies have evaluated CLE for detecting dysplasia and neoplasia in patients with BE. A 2014 meta-analysis found that the pooled sensitivity, specificity, and NPV of available studies were not sufficiently high to replace the standard Seattle protocol, according to criteria adopted by the American Society of Gastrointestinal Endoscopy. There are limited data comparing standard protocols using random biopsies with protocols using CLE and targeted biopsies; therefore, data are inconclusive on the potential for CLE to reduce the number of biopsies in patients with BE undergoing surveillance without compromising diagnostic accuracy. Moreover, studies do not appear to have used a consistent approach to classifying lesions as dysplastic using CLE. The single RCT on surveillance of BE was stopped early because an interim analysis found that CLE did not improve on high-definition white-light endoscopy.

Adequacy of Endoscopic Treatment of Gastrointestinal Lesions

Clinical Context and Test Purpose

This section addresses whether the use of CLE improves the detection of residual disease compared with conventional techniques (i.e., white-light endoscopy).

The purpose of CLE scanning in patients with gastrointestinal lesions who have had endoscopic treatment is to assess the adequacy of endoscopic treatment.

The question addressed in this evidence review is: Does the use of CLE improve the net health outcome in individuals with gastrointestinal lesions who have had endoscopic treatment?

The following PICOs were used to select literature to inform this review.

Patients

The populations of interest are patients with gastrointestinal lesions who have had endoscopic treatment.

Interventions

The intervention of interest is CLE, which would be administered in a facility equipped with an endomicroscope.

Comparators

The following tools and practices are currently being used for gastrointestinal lesions: standard endoscopy.

Outcomes

The outcomes of interest include OS, disease-specific survival, test validity, and resource utilization. The timing of CLE would be during the disease confirmation process following endoscopy.

Clinically Valid

A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Study Selection Criteria

For the evaluation of the clinical validity of this test, studies were considered that meet the eligibility criteria described in the first indication.
Systematic Reviews
Ypsilantis et al (2015) published a systematic review that included retrospective and prospective studies reporting the diagnostic accuracy of CLE for the detection of residual disease after endoscopic mucosal resection of gastrointestinal lesions. After examining full-text articles, three studies (one RCT, two prospective, nonrandomized comparative studies) met the eligibility criteria. Studies included patients with BE, gastric neoplasia, and colorectal neoplasia. There was significant heterogeneity among studies. In a per-lesion meta-analysis, pooled sensitivity of CLE for detecting neoplasia was 91% (95% CI, 83% to 96%) and pooled specificity was 69% (95% CI, 61% to 76%). Based on the small number of studies and heterogeneity among studies, reviewers concluded that the evidence on the utility of CLE in assessing the adequacy of endoscopic mucosal resection was weak.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs.

No RCTs assessing the clinical utility of CLE to improve the treatment assessment of gastrointestinal lesions were identified.

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

Because the clinical validity of CLE has not been established for this indication, a chain of evidence cannot be constructed.

Section Summary: Adequacy of Endoscopic Treatment of Gastrointestinal Lesions
There is insufficient evidence to demonstrate that CLE improves on standard practice for assessing the adequacy of endoscopic treatment of gastrointestinal lesions. A single RCT that addressed surveillance of BE is considered in that section.

Other Potential Applications of CLE
Clinical Context and Test Purpose
The purpose of CLE scanning in patients with suspicion of other conditions diagnosed by identification and biopsy of lesions (e.g., lung, bladder, or gastric cancer) is to provide a real-time alternative to histology and assist in targeting areas for biopsy.

The question addressed in this evidence review is: Does the use of CLE improve the net health outcome in individuals with suspicion of other conditions diagnosed by identification and biopsy of lesions (e.g., lung, bladder, or gastric cancer)?

The following PICOs were used to select literature to inform this review.

Patients
The populations of interest are patients with suspicion of other conditions diagnosed by identification and biopsy of lesions (e.g., lung, bladder, or gastric cancer).
Interventions
The intervention of interest is CLE, which would be administered in a facility equipped with an endomicroscope.

Comparators
The following tools and practices are currently being used for other conditions diagnosed by identification and biopsy of lesions: standard diagnostic procedures.

Outcomes
The outcomes of interest include OS, disease-specific survival, test validity, and resource utilization. The timing of CLE would be during the disease confirmation process following endoscopy.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires a review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Study Selection Criteria
For the evaluation of the clinical validity of this test, studies were considered that meet the eligibility criteria described in the first indication.

Studies have evaluated CLE for diagnosing a variety of conditions, including lung cancer,20,21,22, bladder cancer,23,24, head and neck cancer,25,26, esophageal cancer,27,28, atrophic gastritis,29, gastric cancer,30-32, pancreatic cysts,33,34, breast surgery,35, and biliary strictures.36 These studies, mostly pilot feasibility studies and diagnostic accuracy studies, are insufficient to determine the accuracy of CLE and its potential role in clinical care for patients with these conditions.

Summary of Evidence
For individuals who have suspected or known colorectal lesions who receive CLE as an adjunct to colonoscopy, the evidence includes multiple diagnostic accuracy studies. The relevant outcomes are OS, disease-specific survival, test validity, and resource utilization. While the reported sensitivity and specificity in these studies are high, it is uncertain whether the accuracy is sufficiently high to replace biopsy/polypectomy and histopathologic analysis. Moreover, issues remain concerning the use of this technology in clinical practice (e.g., the learning curve, interpretation of lesions). The evidence is insufficient to determine the effects of technology on net health outcomes.

For individuals who have BE who are undergoing surveillance who receive CLE with targeted biopsy, the evidence includes several RCTs and a meta-analysis. The relevant outcomes are OS, disease-specific survival, test validity, and resource utilization. Evidence from RCTs has suggested CLE is more sensitive than standard endoscopy for identifying areas of dysplasia. However, a 2014 meta-analysis found that the pooled sensitivity, specificity, and NPV of available studies were not sufficiently high to replace the standard surveillance protocol. National guidelines continue to recommend 4-quadrant random biopsies for patients with BE undergoing surveillance. The single RCT, which compared high-definition white-light endoscopy with high-definition white-light endoscopy plus CLE, was stopped early because an interim analysis did not find a between-group difference in outcomes. The evidence is insufficient to determine the effects of technology on net health outcomes.
For individuals who have gastrointestinal lesions and have had endoscopic treatment who receive CLE to assess the adequacy of endoscopic treatment, the evidence includes a systematic review. The relevant outcomes are OS, disease-specific survival, test validity, and resource utilization. The evidence is insufficient to determine the effects of technology on net health outcomes.

For individuals who have a suspicion of a condition diagnosed by identification and biopsy of lesions (e.g., lung, bladder, or gastric cancer) who receive CLE, the evidence includes a small number of diagnostic accuracy studies. The relevant outcomes are OS, disease-specific survival, test validity, and resource utilization. There is limited evidence on the diagnostic accuracy of CLE for these other indications. The evidence is insufficient to determine the effects of technology on net health outcomes.

Supplemental Information
Practice Guidelines and Position Statements

American Society for Gastrointestinal Endoscopy
The American Society for Gastrointestinal Endoscopy (2006; reaffirmed in 2011) published guidelines on the role of endoscopy in the surveillance of premalignant conditions of the upper gastrointestinal (GI) tract.37,12 Regarding the use of confocal endoscopy as an adjunct to white-light endoscopy, the guidelines stated that this technique is “still in development.” The guidelines also included the following statements on surveillance of patients with Barrett esophagus (BE):

2. “The cost effectiveness of surveillance in patients without dysplasia is controversial. Surveillance endoscopy is appropriate for patients fit to undergo therapy, should endoscopic/histologic findings dictate. For patients with established Barrett's esophagus of any length and with no dysplasia, after 2 consecutive examinations within 1 year, an acceptable interval for additional surveillance is every 3 years.”

3. “Patients with high-grade dysplasia are at significant risk for prevalent or incident cancer. Patients who are surgical candidates may elect to have definitive therapy. Patients who elect surveillance endoscopy should undergo follow-up every 3 months for at least 1 year, with multiple large capacity biopsy specimens obtained at 1 cm intervals. After 1 year of no cancer detection, the interval of surveillance may be lengthened if there are no dysplastic changes on 2 subsequent endoscopies performed at 3-month intervals. High-grade dysplasia should be confirmed by an expert GI pathologist.”

4. “Surveillance in patients with low-grade dysplasia is recommended. The significance of low-grade dysplasia as a risk factor for cancer remains poorly defined; therefore, the optimal interval and biopsy protocol has not been established. A follow-up EGD (screening esophagastroduodenoscopy) (i.e., at 6 months) should be performed with concentrated biopsies in the area of dysplasia. If low-grade dysplasia is confirmed, then one possible management scheme would be surveillance at 12 months and yearly thereafter as long as dysplasia persists.”

The Society (2012) stated the following in their guideline on the role of endoscopy in BE and other premalignant conditions of the esophagus: “Adjuncts to white-light endoscopy used to improve the sensitivity for the detection of BE and dysplastic BE include chromoendoscopy, electrical enhanced imaging, magnification, and confocal endoscopy.”38

The Society (2014) published a technology status evaluation on confocal laser endomicroscopy (CLE).12 It concluded that CLE is an emerging technology with the potential to improve patient care. However, before it can be widely accepted, further studies are needed in the following areas:

1. “[T]he applicability and practicality of CLE, especially in community settings [because the research has been done] primarily in academic centers.”

2. The “learning curve of CLE image interpretation ... and additional time needed to perform the procedure...."
3. “The clinical efficacy of the technology ... compared to other available advanced imaging technologies...”
4. “Improvements in CLE imaging and image interpretation....”

American Gastroenterological Association

The American Gastroenterological Association (2011) published a position statement on the management of BE.1 The statement included the following recommendations on endoscopic surveillance of BE (see Table 2).

Table 2. Recommendations on Endoscopic Surveillance of Barrett Esophagus

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>LOR</th>
<th>QOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>“The guideline developers suggest that endoscopic surveillance be performed in patients with Barrett’s esophagus.”</td>
<td>Weak</td>
<td>Moderate</td>
</tr>
<tr>
<td>“The guideline developers suggest the following surveillance intervals:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No dysplasia: 3-5 years</td>
<td>Weak</td>
<td>Low</td>
</tr>
<tr>
<td>• Low-grade dysplasia: 6-12 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• High-grade dysplasia in the absence of eradication therapy: 3 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“For patients with Barrett’s esophagus who are undergoing surveillance, the guideline developers recommend:”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Endoscopic evaluation be performed using white-light endoscopy.</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
<tr>
<td>• 4-quadrant biopsy specimens be taken every 2 cm.</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
<tr>
<td>• Specific biopsy specimens of any mucosal irregularities be submitted separately to the pathologist.</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
<tr>
<td>• 4-quadrant biopsy specimens be obtained every 1 cm in patients with known or suspected dysplasia.”</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

The guideline developers suggest against requiring chromoendoscopy or advanced imaging techniques for the routine surveillance of patients with Barrett’s esophagus at this time.”

U.S. Preventive Services Task Force Recommendations

The U.S. Preventive Services Task Force recommendations on colorectal cancer screening do not mention CLE.

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials

Currently, ongoing and unpublished trials that might influence this review are listed in Table 3.

Table 3. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ongoing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02922049</td>
<td>Probe-based Confocal Laser Endomicroscopy in Accurate Histopathologic Gastrointestinal Lesion</td>
<td>80</td>
<td>Apr 2020</td>
</tr>
<tr>
<td></td>
<td>Unpublished</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT03013894</td>
<td>Feasibility of Confocal Laser Microendoscopy in Bladder Cancer Diagnosis</td>
<td>60</td>
<td>Oct 2017</td>
</tr>
<tr>
<td>NCT02672774</td>
<td>Study of Minimally Invasive Endoscopic Imaging Methods for the Evaluation of Neoangiogenesis in Gastrointestinal Cancers</td>
<td>50</td>
<td>Sep 2017</td>
</tr>
<tr>
<td>NCT02799420</td>
<td>Role of Probe-based Confocal Laser Endomicroscopy in Targeted Biopsy in the Molecular Study of Undifferentiated Gastric Cancer</td>
<td>74</td>
<td>Sep 2017</td>
</tr>
<tr>
<td>NCT No.</td>
<td>Trial Name</td>
<td>Planned Enrollment</td>
<td>Completion Date</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>NCT02930616</td>
<td>A Comparison of pCLE Based Targeted Biopsy and WLE Based Standard Biopsy in Staging the Operative Link on Gastric Intestinal Metaplasia (OLGIM): A Randomized Cross-over Study</td>
<td>40</td>
<td>Jun 2017 (unknown; last updated Oct 2016)</td>
</tr>
<tr>
<td>NCT01887509</td>
<td>Evaluation of Rectal Tumor Margin Using Confocal Endomicroscopy and Comparison to Histopathology</td>
<td>21</td>
<td>Oct 2016 (terminated due to patient recruitment,)</td>
</tr>
<tr>
<td>NCT02632682</td>
<td>Real-Time Diagnosis of Barrett’s Esophagus: Comparing Confocal Laser Endomicroscopy with Conventional Histology for the Identification of Specialized Intestinal Metaplasia</td>
<td>172</td>
<td>Sep 2016 (completed; last updated Dec 2016)</td>
</tr>
<tr>
<td>NCT01931579</td>
<td>Assessment of Probe Based Confocal Laser Endomicroscopy for In-vivo Diagnosis of Peripheral Lung Nodules and Masses (NODIVEM Study)</td>
<td>120</td>
<td>Jun 2016 (completed; last updated Aug 2016)</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

References

PMID 27129127.
32. Park CH, Kim H, Jo JH et al. Role of probe-based confocal laser endomicroscopy-
targeted biopsy in the molecular and histopathological study of gastric cancer. J.
Gastroenterol. Hepatol., 2018 Sep 18;34(1). PMID 30221400.
pancreatic cysts: the current agreement in interpretation. Gastroint Endosc. May
2016;83(5):924-927. PMID 26382051.
lesions by needle-based confocal laser endomicroscopy (nCLE): proposition of a
comprehensive nCLE classification confirmed by an external retrospective evaluation.
confocal laser endomicroscopy for the characterization of indeterminate biliary
surveillance of premalignant conditions of the upper GI tract. Gastroint Endosc. Apr
2006;63(4):570-580. PMID 16564854.
38. Evans JA, Early DS, Fukami N et al. The role of endoscopy in Barrett's esophagus and other
PMID 23164510.
report and systematic review for the US Preventive Services Task Force. JAMA. Jun 21
2016;315(23):2576-2594. PMID 27305422.
(November 2019)

Documentation for Clinical Review

- No records required

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according
to product design; therefore, contract language should be reviewed before applying the terms
of the Policy. Inclusion or exclusion of codes does not constitute or imply member coverage or
provider reimbursement.

IE

The following services may be considered investigational.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT®</td>
<td>0397T</td>
<td>Endoscopic retrograde cholangiopancreatography (ERCP), with optical endomicroscopy (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>43206</td>
<td>Esophagoscopy, flexible, transoral; with optical endomicroscopy</td>
</tr>
<tr>
<td></td>
<td>43252</td>
<td>Esophagogastroduodenoscopy, flexible, transoral; with optical endomicroscopy</td>
</tr>
<tr>
<td></td>
<td>88375</td>
<td>Optical endomicroscopic image(s), interpretation and report, realtime or referred, each endoscopic session</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td>none</td>
</tr>
</tbody>
</table>
Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/27/2013</td>
<td>BCBSA Medical Policy adoption</td>
</tr>
<tr>
<td>03/30/2015</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>01/01/2016</td>
<td>Coding update</td>
</tr>
<tr>
<td>07/01/2016</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>02/01/2017</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>01/01/2018</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>02/01/2019</td>
<td>Policy revision without position change</td>
</tr>
<tr>
<td>02/01/2020</td>
<td>Annual review. No change to policy statement. Literature review updated.</td>
</tr>
</tbody>
</table>

Definitions of Decision Determinations

Medically Necessary: Services that are Medically Necessary include only those which have been established as safe and effective, are furnished under generally accepted professional standards to treat illness, injury or medical condition, and which, as determined by Blue Shield, are: (a) consistent with Blue Shield medical policy; (b) consistent with the symptoms or diagnosis; (c) not furnished primarily for the convenience of the patient, the attending Physician or other provider; (d) furnished at the most appropriate level which can be provided safely and effectively to the patient; and (e) not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of the Member’s illness, injury, or disease.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member’s health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member’s eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department at (800) 541-6652, or the Transplant Case Management Department at (800) 637-2066 ext. 3507708 or visit the provider portal at www.blueshieldca.com/provider.

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence.
over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.