Chronic intermittent intravenous insulin therapy is considered investigational.

This policy does not apply to use of intravenous insulin infusions in the inpatient setting (i.e., for the treatment of diabetic ketoacidosis or diabetic hyperosmolar coma).

Coding

The following HCPCS code is specific to chronic intermittent intravenous insulin therapy (CIIIT):
- **G9147**: Outpatient Intravenous Insulin Treatment (OIVIT) either pulsatile or continuous, by any means, guided by the results of measurements for: respiratory quotient; and/or, urine urea nitrogen (UUN); and/or, arterial, venous or capillary glucose; and/or potassium concentration

There is no specific CPT code describing chronic intermittent intravenous insulin therapy (CIIIT). The following series of CPT codes and HCPCS J codes are used to describe the various components of CIIIT. Some codes, such as the code for glucose testing, may be used more than once during a single session of CIIIT.

CPT Codes
- **82948**: Glucose; blood, reagent strip
- **96365**: Intravenous infusion, for therapy, prophylaxis, or diagnosis (specify substance or drug); initial, up to one hour
- **96366**: Intravenous infusion, for therapy, prophylaxis, or diagnosis (specify substance or drug); each additional hour (List separately in addition to code for primary procedure)

J Codes
- **J7050**: Infusion, normal saline solution, 250 cc
- **J1817**: Insulin for administration through DME (i.e., insulin pump) per 50 units

Description

Chronic intermittent intravenous insulin therapy (CIIIT) is a technique for delivering variable-dose insulin to diabetic patients with the goal of improved long-term glycemic control. Through an unknown mechanism, CIIIT is postulated to induce insulin-dependent hepatic enzymes to suppress glucose production.

Related Policies
- Implantable Infusion Pump for Pain and Spasticity

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.
Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

Regulatory Status

Any insulin infusion pump can be used for chronic intermittent intravenous insulin therapy. Infusion pumps have been cleared for marketing by the U.S. Food and Drug Administration through the 510(k) process. The Food and Drug Administration determined that this device was substantially equivalent to existing devices for the delivery of intravenous medications. Food and Drug Administration product code: lZG.

Rationale

Background

Glucose Homeostasis

Insulin-mediated glucose homeostasis involves three primary functions that occur at three locations: (1) insulin secretion by the pancreas; (2) glucose uptake, primarily in the muscle, liver, gut, and fat; and (3) hepatic glucose production. In the fasting state, when insulin levels are low, most glucose uptake into cells is non-insulin-mediated. Glucose uptake is then balanced by the liver production of glucose. However, after a glucose challenge, insulin binds to specific receptors on the hepatocyte to suppress glucose production. Without this inhibition, marked hyperglycemia may result.

Medications for Glucose Homeostasis in Diabetes

Diabetes is characterized by elevated blood glucose levels due to inadequate or absent insulin production (type 1 diabetes) or due to increased hepatic glucose production, decreased peripheral glucose uptake, and decreased insulin secretion (type 2 diabetes).

The different classes of diabetic drug therapy target different aspects of glucose metabolism. Various insulin secretagogues (e.g., sulfonylureas) function by increasing the pancreatic secretion of insulin; thiazolidinediones (e.g., pioglitazone [Actos], rosiglitazone [Avandia]) function in part by increasing glucose uptake in the peripheral (principally skeletal) tissues; and biguanides (e.g., metformin) function by decreasing hepatic glucose production. While patients with type 2 diabetes may be treated with various combinations of all three of these classes of drugs, with or without additional insulin, patients with type 1 diabetes, who have no baseline insulin secretion, receive exogenous insulin therapy. Standard insulin management involves the use of subcutaneous injection to mimic a physiologic insulin profile. Intravenous insulin is used in the acute inpatient setting to manage hyperglycemic emergencies (e.g., diabetic ketoacidosis).

Literature Review

Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life, and ability to function—including benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of technology, two domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the
intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Chronic Intermittent Intravenous Insulin Therapy for Type 1 Diabetes

Clinical Context and Test Purpose

The purpose of CIIIT in patients who have Type 1 diabetes mellitus is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: does the use of CIIIT to treat patients with Type 1 diabetes mellitus improve net health outcomes?

The following PICOTS were used to select literature to inform this review.

Patients

The relevant population of interest are patients with Type 1 diabetes mellitus who need improved glycemic control.

Interventions

The therapy being considered is CIIT. Several forms of chronic intermittent insulin therapy, in which insulin is delivered intravenously or into the peritoneal space, have been evaluated.

CIIT—also referred to as outpatient intravenous insulin therapy, pulsatile intravenous insulin therapy, hepatic activation therapy, or metabolic activation therapy—involves delivering insulin intravenously once weekly over several hours in a pulsatile fashion using a specialized pump controlled by a computerized program that adjusts the doses based on frequent blood glucose monitoring. CIIT is principally designed to normalize the hepatic metabolism of glucose. Currently, no studies have been identified that have investigated the proposed mechanism of action of CIIT in humans.

Aoki et al (1993) proposed that, in patients with type 1 diabetes, lower levels of insulin in the portal vein are associated with a decreased concentration of the liver enzymes required for hepatic metabolism of glucose. They stated: "We reasoned that if the liver of an IDDM [insulin-dependent diabetes mellitus; i.e., type 1 diabetes] patient could be perfused with near-normal concentrations of insulin during meals, the organ could be reactivated," and proposed that intermittent intravenous pulsatile infusions of insulin administered once weekly while the patient ingests a carbohydrate meal would increase the portal vein concentrations of insulin, ultimately stimulating the synthesis of glucokinase and other insulin-dependent enzymes. The pulses are designed to deliver a higher, more physiologic concentration of insulin to the liver than is delivered by traditional subcutaneous injections. This higher level of insulin is thought to more closely mimic the body's natural levels of insulin because it is delivered to the liver. The goal of this outpatient therapy is improved glucose control through improved hepatic activation.

Comparators

The following therapies and practices are currently being used to make decisions about treatment to maintain normoglycemia in patients with Type 1 diabetes mellitus: guideline-directed diabetic medical therapy including subcutaneous insulin as well as diabetes self-management with glucose monitoring, diet and exercise regimens.
Outcomes
The general outcomes of interest are symptomatic hyperglycemia and hypoglycemia, disease status changes such as the development of end-organ damage and treatment-related morbidity.

Timing
Patients with Type 1 diabetes mellitus require lifelong medical monitoring of glycemic control and end-organ status. Informal publication has indicated that patients have been treated with CIIIT for as long as 12 years.

Setting
Patients receive CIIIT in weekly outpatient treatment sessions.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:

a. To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs
b. In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies
c. To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought

Studies with duplicative or overlapping populations were excluded.

Glycemic Control
Aoki et al (1993) published a case series of 20 patients with “brittle” type 1 diabetes. All patients received four daily injections of insulin (type of insulin not described); additional oral drug therapy, if any, was not described. Throughout the study, patients remained in close contact with the clinic (at least once a week), during which time appropriate adjustments in diet, insulin doses, and physical activity were made. While the study reported a decrease in the hemoglobin A1c (HbA1c) levels, the lack of a control group limits the interpretation of the results. For example, the intense follow-up of the patients could have impacted results, regardless of any possible effects of the CIIIT.

Aoki et al (1995) also examined the effect of CIIIT with hypertensive medications in 26 patients with type 1 diabetes and associated hypertension and nephropathy. The 26 patients were randomized to a control group or a treatment group for 3 months and then crossed over for an additional 3 months. At baseline, all patients were being treated with four daily insulin injections and had achieved acceptable HbA1c levels of 7.4%. Patients also achieved acceptable baseline blood pressure control (<140/90 mm Hg) with a variety of medications (i.e., angiotensin-converting enzyme inhibitors, calcium channel blockers, loop diuretics, alpha-2 agonists). The study was randomized, but not blinded, in that sham CIIIT procedures were not performed. Therefore, those patients receiving CIIIT received more intense follow-up during this period. During the treatment phase, patients reported a significant decrease in the dosage of antihypertensive medications. No difference in glycemic control was noted. Because all patients had adequate blood pressure control at baseline, the clinical significance of the decrease in antihypertensive dosage requirement associated with CIIIT is uncertain.

Section Summary: Glycemic Control
One nonblinded RCT and a case series reporting on the effect of CIIIT on glycemic control in type 1 diabetes were identified. Both studies reported improvements: one in HbA1c levels compared with baseline, and the other in a dose of antihypertensive medication in the treatment group compared with control. However, the lack of a blinded control comparator group in the RCT limits the conclusions that can be drawn.
Reproductions in Diabetic End-Organ Damage

Weinrauch et al. (2010) published an RCT of the effects of CIIIT on progression of nephropathy and retinopathy in 65 subjects with type 1 diabetes. Patients were randomized to standard therapy of 3 to 4 daily subcutaneous insulin injections (n=29; control group) or standard therapy plus weekly CIIIT (n=36; treatment group). Baseline demographic characteristics were similar between the 2 groups, as were the age of onset, duration of diabetes, control of HbA1c levels, and renal function (average creatinine, 1.59 mg/dL; average creatinine clearance, 60.6 mL/min). Primary endpoints were a progression of diabetic retinopathy and nephropathy. There was no significant difference in progression of diabetic retinopathy. Progression was noted in 18.8% of 122 eyes adequately evaluated (17.9% of 67 treated eyes, 20.0% of 55 controls; p=0.39). On average, serum creatinine increased in both groups; the increase was smaller in the treatment group (0.09 mg/dL) than in the control group (0.39 mg/dL; p=0.035). While average creatinine clearance fell less in the treatment group (-5.1 mL/min), the difference vs standard therapy was not significant (-9.9 mL/min; p=0.30). Glycemic control did not vary significantly. The clinical significance of the difference in creatinine levels is uncertain.

Dailey et al. (2000) reported on a prospective, multicenter, controlled study evaluating the effects of CIIIT on the progression of diabetic nephropathy. They assessed 49 type 1 diabetes patients with nephropathy who were following the Diabetes Control and Complications Trial intensive therapy regimen. Of these, 26 were assigned to the control group, which continued intensive therapy, and 23 were assigned to the treatment group, which underwent weekly CIIIT plus intensive therapy. Both groups reported a significant decrease in HbA1c levels during the 18-month study period. Creatinine clearance declined in both groups as expected, but the rate of decline in the treatment group was significantly less than in the control group. The clinical significance of this finding is uncertain. Larger clinical trials that evaluate the endpoint of time to progression of renal failure are needed.

Section Summary: Reductions in Diabetic End-Organ Damage

Two controlled studies focusing on the efficacy of CIIIT for reducing diabetic end-organ complications were identified. Both reported significant improvements in intermediate measures of glycemic control in each group from pre- to post-intervention but did not consistently report differences in clinically meaningful outcomes from the beginning of the studies to the end. Similarly, there were no significant differences between treatment groups in the RCT.

Summary of Evidence

For individuals who have type 1 diabetes who receive CIIIT, the evidence includes two RCTs and several uncontrolled studies. The relevant outcomes are symptoms, change in disease status, and treatment-related morbidity. A limited number of uncontrolled studies have suggested that CIIIT might improve glycemic control. The two randomized trials have reported that CIIIT might moderate the progression of nephropathy or retinopathy. However, the published studies were small and reported improvements on intermediate outcomes only (i.e., changes in laboratory values). The clinical significance of the differences reported in these trials is uncertain. Additionally, most published evidence appeared between 1993 and 2010 and, as a result, does not account for improvements in diabetes care. The evidence is insufficient to determine the effects of the technology on health outcomes.

Supplemental Information

Practice Guidelines and Position Statements

The American Diabetes Association (2019) “Standards of Medical Care in Diabetes” includes the American Diabetes Association’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate the quality of care. The pharmacologic approaches to glycemic treatment are summarized in chapter 9.
U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
The Centers for Medicare & Medicaid Services (2009) issued a decision memo on the use of outpatient intravenous insulin therapy, which stated7:

“Effective ... 2009, the Centers for Medicare and Medicaid Services (CMS) determines that the evidence is adequate to conclude that OIVIT [outpatient intravenous insulin therapy; CIIIT] does not improve health outcomes in Medicare beneficiaries. Therefore, CMS determines that OIVIT is not reasonable and necessary.... Services comprising an Outpatient Intravenous Insulin Therapy regimen are nationally non-covered under Medicare when furnished pursuant to an OIVIT regimen....”

Ongoing and Unpublished Clinical Trials
A search for active or recruiting clinical trials in January 2019 did not yield results for trials that might influence this review.

References

Documentation for Clinical Review

- No records required

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy. Inclusion or exclusion of codes does not constitute or imply member coverage or provider reimbursement.
IE

The following services may be considered investigational.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT®</td>
<td>82948</td>
<td>Glucose; blood, reagent strip</td>
</tr>
<tr>
<td></td>
<td>96365</td>
<td>Intravenous infusion, for therapy, prophylaxis, or diagnosis (specify substance or drug); initial, up to 1 hour</td>
</tr>
<tr>
<td></td>
<td>96366</td>
<td>Intravenous infusion, for therapy, prophylaxis, or diagnosis (specify substance or drug); each additional hour (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>HCPCS</td>
<td>G9147</td>
<td>Outpatient Intravenous Insulin Treatment (OIVIT) either pulsatile or continuous, by any means, guided by the results of measurements for: respiratory quotient; and/or, urine urea nitrogen (UUN); and/or, arterial, venous or capillary glucose; and/or potassium concentration</td>
</tr>
<tr>
<td></td>
<td>J 1817</td>
<td>Insulin for administration through DME (i.e., insulin pump) per 50 units</td>
</tr>
<tr>
<td></td>
<td>J 7050</td>
<td>Infusion, normal saline solution, 250 cc</td>
</tr>
<tr>
<td>ICD-10</td>
<td>3E030VG</td>
<td>Introduction of Insulin into Peripheral Vein, Open Approach</td>
</tr>
<tr>
<td>Procedure</td>
<td>3E033VG</td>
<td>Introduction of Insulin into Peripheral Vein, Percutaneous Approach</td>
</tr>
<tr>
<td></td>
<td>3E040VG</td>
<td>Introduction of Insulin into Central Vein, Open Approach</td>
</tr>
<tr>
<td></td>
<td>3E043VG</td>
<td>Introduction of Insulin into Central Vein, Percutaneous Approach</td>
</tr>
<tr>
<td></td>
<td>3E050VG</td>
<td>Introduction of Insulin into Peripheral Artery, Open Approach</td>
</tr>
<tr>
<td></td>
<td>3E053VG</td>
<td>Introduction of Insulin into Peripheral Artery, Percutaneous Approach</td>
</tr>
<tr>
<td></td>
<td>3E060VG</td>
<td>Introduction of Insulin into Central Artery, Open Approach</td>
</tr>
<tr>
<td></td>
<td>3E063VG</td>
<td>Introduction of Insulin into Central Artery, Percutaneous Approach</td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/14/2001</td>
<td>BCBSA Medical Policy adoption</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>01/07/2011</td>
<td>Policy title change from Pulsatile Intravenous Insulin Therapy (PIVIT) for Type 1 Diabetes Mellitus (a.k.a. PIVIT or CIIIT) Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>09/30/2014</td>
<td>Policy title change from Chronic Intermittent Intravenous Insulin Therapy (CIIIT) Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>04/01/2016</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>04/01/2017</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>04/01/2018</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>04/01/2019</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
</tbody>
</table>

Definitions of Decision Determinations

Medically Necessary: A treatment, procedure, or drug is medially necessary only when it has been established as safe and effective for the particular symptoms or diagnosis, is not
investigational or experimental, is not being provided primarily for the convenience of the patient or the provider, and is provided at the most appropriate level to treat the condition.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member's health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member's eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department. Please call (800) 541-6652 or visit the provider portal at www.blueshieldca.com/provider.

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.