Policy Statement

The California Reconstructive Surgery Act (Health & Safety Code Section 1367.63 and the Insurance Code Section 10123.88) defines “reconstructive surgery” as surgery performed to correct or repair abnormal structures of the body caused by congenital defects, developmental abnormalities, trauma, infection, tumors, or disease to do either of the following:

- Create a normal appearance to the extent possible
- Improve function

If a procedure is determined to be reconstructive surgery, as defined above, the procedure may be denied as not medically necessary under any of the following conditions:

- The procedure, if not primarily intended to improve function, is likely to result in only minimal improvement in appearance
- The treating surgeon cannot or will not provide sufficient documentation, including (when appropriate) medical quality color photographs, which accurately depicts the extent of the clinical problem
- There is alternative approved medical or surgical intervention with equal or superior clinical outcomes

Dermal Chemical Peels

Dermal chemical peels may be considered medically necessary when used to treat patients with numerous (greater than 10) actinic keratoses or other premalignant skin lesions, such that treatment of the individual lesions becomes impractical.

Dermal peels are considered not medically necessary when used to treat end-state acne scarring.

Epidermal Chemical Peels

Epidermal chemical peels may be considered medically necessary when used to treat patients with active acne that has failed a trial of topical and/or oral antibiotic acne therapy. In this setting, superficial chemical peels with 40% to 70% alpha hydroxy acids are used as a comedolytic therapy. (Alpha hydroxy acids can also be used in lower concentrations [8%] without the supervision of a physician.)

Epidermal chemical peels are considered not medically necessary when used to treat any of the following:

- Acne scarring
- Photoaged skin
- Wrinkles

Policy Guidelines

Requests for all chemical peels should be carefully evaluated to determine the primary reason for the procedure. Epidermal peels would be considered medically necessary in patients with active acne who have failed other therapy because active severe acne may lead to acne scarring and may be psychologically painful leading to low self-esteem, depression, and anxiety. Dermal peels would be considered medically necessary in patients with multiple actinic keratoses because these premalignant lesions may warrant destruction or removal as an alternative to watchful waiting.
The following CPT codes describe chemical peels:
- 15788: Chemical peel, facial; epidermal
- 15789: Chemical peel, facial; dermal
- 15792: Chemical peel, nonfacial; epidermal
- 15793: Chemical peel, nonfacial; dermal

The following CPT code specifically describes chemical exfoliation for acne:
- 17360: Chemical exfoliation for acne (e.g., acne paste, acid)

Chemical exfoliation may be considered part of the general dermatology evaluation and management services.

Making the distinction between active and inactive acne can be difficult. However, simultaneous treatment with either antibiotics or tretinoin is one indication that the patient has active ongoing disease.

Description

A chemical peel is a controlled removal of various layers of the skin with the use of a chemical agent. The most common use for chemical peeling is the treatment of photoaged skin. Chemical peeling has also been used for other conditions, including actinic keratoses, active acne, and acne scarring.

Related Policies

- Dermatologic Applications of Photodynamic Therapy

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

Regulatory Status

U.S. Food and Drug Administration clearance or approval of chemical agents used in peeling may not be relevant because these agents are prepared in-office, may have predated Food and Drug Administration approval, and/or may be considered cosmetic ingredients.

Rationale

Background

Chemical Peels

Chemical peels involve a controlled partial-thickness removal of the epidermis and the outer dermis. When skin is regenerated, a 2- to 3-mm band of dense, compact collagen is formed between the epidermis and the damaged layers of the dermis, resulting in ablation of fine...
winkles and a reduction in pigmentation. These changes can be long-term, lasting 15 to 20 years and may be permanent in some patients. Potential local complications include scarring, infection, hypopigmentation, hyperpigmentation, activation of herpes simplex, and toxic shock syndrome.1

Types of Peels
Chemical peels are often categorized by the depth of the peel: categories include superficial, medium-depth, and deep chemical peels. The precise depth of the peel depends on the concentration of the agent used, the duration of the application, and the number of applications. Possible indications for each type of peel and common chemicals used, as described by Cummings et al (2005)2 and others, is as follows.

Superficial Peels
Superficial peels (epidermal peels) affect the epidermis and the interface of the dermis-epidermis. This depth is considered appropriate for treating mild photoaging, melasma, comedonal acne, and postinflammatory erythema. Common chemical agents used for superficial peels include low concentrations of glycolic acid, 10% to 20% trichloroacetic acid (TCA), Jessner solution (a mixture of resorcinol, salicylic acid, lactic acid, and ethanol), tretinoin, and salicylic acid. As part of the treatment process, superficial peels generally cause mild erythema and desquamation, and healing time ranges from one to four days, depending on the strength of the chemical agent. With superficial peels, patients often undergo multiple sessions, generally six to eight peels performed weekly or biweekly.

Medium-Depth Peels
Medium-depth peels (dermal peels) extend into the epidermis to the papillary dermis. They are used for moderate photoaging, actinic keratoses, pigmentary dyschromias, and mild acne scarring. In the past, 50% TCA was a common chemical agent for medium-depth peels, but its use has decreased due to high rates of complications (e.g., pigmentary changes, scarring). Currently, the most frequently used agent is a combination of 35% TCA with Jessner solution or 70% glycolic acid. Phenol 88% alone is also used for medium-depth peels. The healing process involves mild-to-moderate edema, followed by the appearance of a new, erythematous epithelium. Patients are advised to wait at least three months before resuming skin care services (e.g., superficial chemical peels) and repeat medium-depth chemical peels should not be performed for at least one year.

Deep Peels
Deep chemical peels (another type of dermal peel) penetrate the mid-reticular dermis and have been used for patients with severe photodamage, premalignant skin neoplasms, acne scars, and dyschromias. The most common chemical agent used is Baker solution (which consists of 3 mL of 88% phenol, 8 drops of hexachlorophene [Septisol], 3 drops of croton oil, 2 mL of distilled water). The same depth can be achieved using 50% or greater TCA peel; however, the latter has a higher risk of scarring and pigmentation problems. Phenol is cardiotoxic, and patients must be screened for cardiac arrhythmias or medications that could potentially precipitate an arrhythmia. Phenol can also have renal and hepatic toxicities.

The likelihood and potential severity of adverse events increases as the strength of the chemicals and the depth of peels increases. With deep chemical peels, there is the potential for long-term pigmented disturbances (i.e., areas of hypopigmentation), and selection of patients willing to always wear makeup is advised. Moreover, chemical peels reduce melanin protection, so patients must use protective sunscreen for 9 to 12 months after a medium- to deep-facial peel.

Applications
Chemical peels are a potential treatment option for actinic keratoses and moderate-to-severe acne. Actinic keratoses are common skin lesions associated with extended exposure to the sun, with an estimated prevalence in the United States of 11% to 26%.3 These lesions are generally considered to be a precursor of squamous cell carcinoma.4 The risk of progression to invasive
squamous cell carcinoma is unclear, but estimates vary from 0.1% to 20%. For patients with multiple actinic keratoses, the risk of developing invasive squamous cell carcinoma is estimated as being between 0.15% and 80%. Treatment options include watchful waiting, medication treatment, cryosurgery, surgical resection.

Acne vulgaris is the most common skin condition among adolescents, affecting an estimated 80% of teenagers aged 13 to 18 years old. Acne, particularly moderate-to-severe manifestations, can cause psychologic distress including low self-esteem, depression, and anxiety. There are a variety of oral and topical treatments for acne.

Literature Review

Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life, and ability to function including benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens, and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of technology, two domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Actinic Keratoses

Clinical Context and Therapy Purpose

The purpose of dermal chemical peels for patients who have actinic keratosis is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Does the use of dermal chemical peels improve the net health outcome in patients with actinic keratosis?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest are individuals with actinic keratosis.

Interventions
The therapy being considered is dermal chemical peels.

Comparators
The following therapies are currently being used to treat actinic keratosis: watchful waiting, medication treatment, cryosurgery, surgical resection, and photodynamic therapy.

Outcomes
The general outcomes of interest are destroying actinic keratosis, the durability of this effect, the development of cancerous lesions, quality of life, and the harms of associated treatment-related morbidities.
Timing
The relevant follow-up is within weeks for the efficacy of treatment and years for the occurrence of cancerous lesions.

Setting
Chemical peels are administered in an outpatient setting by dermatologists.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
- To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
- In the absence of such trials, comparative observational studies were sought, with a preference for prospective studies.
- To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
- Studies with duplicative or overlapping populations were excluded.

Systematic Reviews
Older review articles have suggested that chemical peels might be appropriate when there are numerous lesions (i.e., ≥10), making treatment of the individual lesions impractical, and when treatment constitutes a full-thickness necrosis of the epidermis, which is considered curative.6,7

Nonrandomized Trials
RCTs evaluating chemical peels for treatment of actinic keratoses were not identified. One nonrandomized split-face study was identified. This trial by Lawrence et al (1995) evaluated 15 male patients with multiple facial actinic keratoses in similar numbers on both sides of the face.8 Patients were treated on the left side with a single application of Jessner solution plus trichloroacetic acid 35% and on the right side with fluorouracil cream, 5% twice daily for 3 weeks. The efficacy of both treatments was similar. The difference in the number of actinic keratoses on the left vs right side of the face was not statistically significant at 6 or 12 months (p>0.01). Both treatments were associated with nonserious adverse events. On the chemical peel side of the face, patients developed erythema and mild desquamation lasting an average of ten days in all but one patient, for whom the adverse event lasted three months. On the fluorouracil cream side of the face, there was erythema, scaling, erosion, and crusting; these adverse events persisted an additional two to three weeks beyond the three-week treatment period.

Kaminaka et al (2009) reported on a prospective case series from Japan that included 46 patients, 32 with actinic keratoses and 14 with Bowen disease.9 There was no minimum number of actinic keratoses required for inclusion; i.e., the study did not specifically address the treatment of multiple actinic keratoses. Patients received peels with 100% pure phenol applied locally to the lesions once a month for a maximum of 8 months (or less than 8 months if a complete response was achieved sooner). Biopsies were performed on all lesions before and at the end of therapy. Twenty-nine (91%) of the 32 patients with actinic keratoses achieved a complete response (defined as an undetectable lesion at least 1 month after the last phenol application). The average number of treatments for patients with actinic keratoses was 2.9. Ten (83%) of the 12 patients with Bowen disease had a complete response, and the average number of treatments in this group was 5.5. All patients were followed for at least one year after treatment (median follow-up, 2.8 years). By the 1-year follow-up, 2 (4.3%) of 46 patients, one with actinic keratoses and one with Bowen disease, had experienced recurrences. No systemic adverse events were reported. The study lacked a control group and enrolled few subjects, especially in the subset of patients with Bowen disease.

Section Summary: Actinic Keratoses
The evidence consists of a nonrandomized split-face study and case series. The split-face trial found similar outcomes after a single chemical peel and after 3 weeks of treatment with fluorouracil cream 5% in 15 patients. A case series found high response rates and low recurrence
rates at one year in patients with actinic keratoses treated with phenol peels. Additional controlled studies, preferably randomized, are needed to determine the effect of chemical peels on the net health outcome in patients with actinic keratoses.

Moderate-to-Severe Active Acne

Clinical Context and Therapy Purpose

The purpose of epidermal chemical peels for patients who have moderate-to-severe active acne is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Do epidermal chemical peels improve the net health outcome in patients with moderate-to-severe active acne?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest are individuals with moderate-to-severe active acne.

Interventions
The therapy being considered is epidermal chemical peels.

Comparators
The following therapies are currently being used to treat active acne: topical or oral medications.

Outcomes
The general outcomes of interest are the resolution of severe acne and the harms of treatment-related morbidities.

Timing
The relevant follow-up is within weeks for the efficacy of treatment.

Setting
Chemical peels are administered in an outpatient setting by dermatologists.

Study Selection Criteria
Methodologically credible studies were selected using the principles outlined for indication 1.

Randomized Controlled Trials

Kaminaka et al (2014) conducted a double-blinded, placebo-controlled randomized trial using a split-face design in Japan that evaluated 26 patients with moderate-to-severe facial acne. Patients with moderate acne had 6 to 20 inflammatory lesions and up to 20 noninflammatory lesions; patients with severe acne had 21 to 50 inflammatory lesions. Failure of previous treatments was not an explicit inclusion criterion. Patients had to undergo a washout period of two months before study participation during which they could not use topical or oral antibiotics, retinoids, or corticosteroids. Participants then received a chemical peel treatment on a randomly selected side of the face, and a placebo peel on the other side of their face. Both treatments used the same pH acid gel vehicle (pH, 2.0) and the active treatment was a glycolic acid 40% peel. Treatments were given every two weeks for a total of five applications, and follow-up occurred two weeks after the last session (i.e., at ten-week follow-up). The overall therapeutic effect was judged by a blinded dermatologist as excellent or good for 23 (92%) of the chemical peel sides and 10 (40%) of the placebo sides; the difference between groups was statistically significant (p<0.01). Moreover, there were statistically significant reductions in inflammatory lesions, and total lesion counts at each two-week assessment and at the final ten-week assessment. No serious side effects or systemic adverse events were reported.
Several RCTs have compared two types of chemical peels. Most were conducted outside of the United States and used split-faced designs. Among the trials comparing two chemical peel interventions, salicylic acid was used as the chemical peel agent in all but one trial, which was conducted in Turkey.

Dayal et al (2017) in India published a parallel-group RCT comparing salicylic acid 30% peels with peels using Jessner solution in patients with mild-to-moderate facial acne. Patients received six chemical peels using either solution; treatments were performed two weeks apart. At the end of the 12-week treatment period, the percent decrease in mean number of comedones was 53% in the salicylic acid group and 26% in the Jessner solution group. However, there was no significant difference in the decrease in mean papule counts or mean pustule counts at 12 weeks. The mean Michaelson Acne Severity Score, which is based on the number of comedones, papules, and pustules, was significantly better in the salicylic acid group at 12 weeks than in the Jessner solution group. Both treatments were generally well tolerated. Post peel burning and stinging was more common with salicylic acid and post peel erythema was more common with the Jessner solution.

An RCT by Levesque et al (2011) in France compared salicylic acid peels with peels using a lipophilic hydroxy acid derivative of salicylic acid in 20 patients. To be eligible, patients had to have at least 5 noninflammatory acne lesions on each side of the face and fewer than 30 inflammatory acne lesions on the entire face. Participants were required to stop using other acne medications before starting the chemical peel treatment. In this single-blind trial, patients received one treatment to one side of their face (selected randomly) and the other treatment to the other side. Treatments occurred every other week for a total of six peels. At the end of the treatment period, the reduction in the proportion of noninflammatory lesions was 55.6% on the lipophilic hydroxy acid side and 48.5% on the salicylic acid side; the difference between groups was not statistically significant. The number of lesions decreased significantly between baseline and the end of treatment in both groups. Both treatments were well tolerated (as assessed by a global tolerance scale); there was no significant difference between treatments in erythema.

A single-blind RCT by Ilknur et al (2010) compared glycolic acid peels with amino fruit peels. The trial included 30 patients with noninflammed lesions and superficial inflamed lesions, with acne grades 0.25 to 2 using Leeds criteria. Patients received 12 peels on the 2 halves of their faces at 2-week intervals (total, 6 months). Twenty-four (80%) of 30 patients completed the trial. The mean (standard deviation) number of noninflammed lesions on the glycolic acid side decreased from 49.1 (40.6) at baseline to 18.3 (12.9) at 6 months. The mean (standard deviation) number of noninflammed lesions on the amino fruit acid side decreased from 45.6 (43.5) at baseline to 17.1 (14.2) at 6 months. The reduction in lesions did not differ significantly between groups. Findings were similar for the other primary outcome (number of superficial inflamed lesions). At 6 months, the number (standard deviation) of inflamed lesions was 6.9 (5.2) on the glycolic acid side and 7.0 (7.3) on the amino fruit acid side.

Section Summary: Moderate-to-Severe Active Acne
One placebo-controlled randomized trial was identified using a split-faced design with 26 patients who had moderate-to-severe acne. Outcomes (e.g., overall therapeutic effect) were significantly better in the chemical peel group. However, this trial testing a single chemical peel protocol in a relatively small number of patients provides insufficient evidence from which to draw conclusions about the safety and efficacy of chemical peels for treating active acne. Several RCTs compared two chemical peel agents. None of the split-faced trials found significantly better outcomes with one agent over the other. One parallel-group RCT had mixed findings but greater efficacy with salicylic acid peels than with Jessner solution peels for some outcomes. None of the RCTs comparing two chemical peel protocols included a control group that received a different treatment; therefore, it is uncertain whether either type of peel was more effective than alternative approaches to treating acne.
Summary of Evidence
For individuals who have actinic keratoses who receive dermal chemical peels, the evidence includes a nonrandomized split-face study and case series. The relevant outcomes are symptoms, morbid events, quality of life, and treatment-related morbidity. The split-face study found similar outcomes after a single chemical peel or after 3 weeks of treatment with fluorouracil cream 5% in 15 patients. A case series found high response rates and low recurrence rates at one year in patients with actinic keratoses treated with phenol peels. Additional controlled studies, preferably randomized, are needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

Clinical input obtained in 2010 supported the use of chemical peels for treating multiple actinic keratoses.

For individuals who have moderate-to-severe active acne who receive epidermal chemical peels, the evidence includes randomized controlled trials. The relevant outcomes are symptoms, morbid events, quality of life, and treatment-related morbidity. One small randomized trial was placebo-controlled; it found greater efficacy with active treatment than with placebo. Several randomized controlled trials comparing chemical peel agents in patients with acne have reported similar improvements with the types of chemical peels studied. However, no studies were identified comparing chemical peel agents with conventional acne treatment. The evidence is insufficient to determine the effects of the technology on health outcomes.

Clinical input obtained in 2010 supported the use of chemical peels as second-line treatment of active moderate-to-severe acne.

Supplemental Information
Clinical Input From Physician Specialty Societies and Academic Medical Centers
While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

In response to requests from Blue Cross Blue Shield Association, input was received from 3 physician specialty societies and 4 academic medical centers in 2010. Input was consistently in agreement with the medically necessary indications for dermal and epidermal chemical peels. Several reviewers supported the use of chemical peels for post acne scarring.

Practice Guidelines and Position Statements
American Academy of Dermatology
The American Academy of Dermatology (2016) published guidelines on the management of acne vulgaris, which give a B recommendation based on level II and III evidence for the use of chemical peels for acne, with the following statement on chemical peels:

“Studies exist suggesting that chemical peels may improve acne. However, large, multicenter, double-blinded control trials comparing peels to placebo and comparing different peels are lacking. Glycolic acid and salicylic acid chemical peels may be helpful for noninflammatory (comedonal) lesions. However, multiple treatments are needed and the results are not long-lasting. In the opinion of the work group, chemical peels may result in mild improvement in comedonal acne.”

American Society for Dermatologic Surgery
The American Society for Dermatologic Surgery (2017) published recommendations on the use of several skin treatments following a course of isotretinoin, a treatment for severe cystic acne. Previously, a number of cosmetic skin treatments, including chemical peels, were discouraged for six months after the use of isotretinoin. These 2017 guidelines evaluated various treatments in the context of scarring and found that superficial chemical peels were safe as a treatment either concurrent with isotretinoin or within six months of its discontinuation. The lack of...
data on medium or deep chemical peels did not permit the Society to make a recommendation on those treatments.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials
A search of ClinicalTrials.gov in November 2018 did not identify any ongoing or unpublished trials that would likely influence this review.

References

Documentation for Clinical Review

Please provide the following documentation (if/when requested):
- History and physical and/or consultation notes including:
 - Documented trial of topical and/or oral antibiotic treatment and response
 - Reason for chemical peel
 - Severity/number of lesions

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy. Inclusion or exclusion of codes does not constitute or imply member coverage or provider reimbursement.

MN/NMN

The following services may be considered medically necessary when policy criteria are met. Services may be considered not medically necessary when policy criteria are not met.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT®</td>
<td>15788</td>
<td>Chemical peel, facial; epidermal</td>
</tr>
<tr>
<td>CPT®</td>
<td>15789</td>
<td>Chemical peel, facial; dermal</td>
</tr>
<tr>
<td>CPT®</td>
<td>15792</td>
<td>Chemical peel, nonfacial; epidermal</td>
</tr>
<tr>
<td>CPT®</td>
<td>15793</td>
<td>Chemical peel, nonfacial; dermal</td>
</tr>
<tr>
<td>CPT®</td>
<td>17360</td>
<td>Chemical exfoliation for acne (e.g., acne paste, acid)</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>ICD-10</td>
<td>3E00XTZ</td>
<td>Introduction of Destructive Agent into Skin and Mucous Membranes, External Approach</td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/29/2014</td>
<td>BCBSA Medical Policy adoption</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>03/30/2015</td>
<td>Policy clarification</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>12/04/2015</td>
<td>Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>02/01/2017</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>02/01/2018</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>03/01/2019</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
</tbody>
</table>
Definitions of Decision Determinations

Medically Necessary: A treatment, procedure, or drug is medically necessary only when it has been established as safe and effective for the particular symptoms or diagnosis, is not investigational or experimental, is not being provided primarily for the convenience of the patient or the provider, and is provided at the most appropriate level to treat the condition.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member's health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member's eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department. Please call (800) 541-6652 or visit the provider portal at www.blueshieldca.com/provider.

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.