Policy Statement

Initial or repeat bone mineral density (BMD) measurement is not indicated unless the results will influence treatment decisions.

An initial measurement of central (hip or spine) BMD using dual x-ray absorptiometry may be considered medically necessary to assess fracture risk and the need for pharmacologic therapy in individuals who are considered at risk for osteoporosis. BMD testing may be indicated under any of the following conditions:

- Women age 65 and older, regardless of other risk factors
- Men age 70 and older, regardless of other risk factors
- Younger postmenopausal women about whom there is a concern based on their risk factors
- Men age 50 to 70 about whom there is a concern based on their risk factors
- Adults with a condition or taking a medication associated with low bone mass or bone loss

Repeat measurement of central (hip or spine) BMD using dual x-ray absorptiometry (DXA) for individuals who previously tested normal (does not require pharmacologic treatment) may be considered medically necessary at an interval not more frequent than every 3 to 5 years; the interval depends on patient risk factors.

Regular (not more frequent than every 2-3 years) serial measurements of central (hip or spine) BMD using dual x-ray absorptiometry to monitor treatment response may be considered medically necessary when the information will affect treatment decisions such as duration of therapy.

Peripheral DXA BMD testing may be considered medically necessary for either of the following indications:

- When conventional central (hip or spine) DXA screening is not feasible
- In the management of hyperparathyroidism, where peripheral DXA at the forearm (i.e., radius) is essential for evaluation

BMD measurement using ultrasound densitometry, quantitative computed tomography, or dual x-ray absorptiometry of peripheral sites is considered investigational except as noted above.

Policy Guidelines

The decision to perform bone density assessment should be based on an individual's fracture risk profile and skeletal health assessment. In addition to age, gender, and BMD, risk factors included in the World Health Organization Fracture Risk Assessment (FRAX) Tool are:

- Low body mass index
- Parental history of hip fracture
- Previous fragility fracture in adult life (i.e., occurring spontaneously or a fracture arising from trauma which, in a healthy individual, would not have resulted in a fracture)
- Current smoking or alcohol 3 or more units/day, where a unit is equivalent to a standard glass of beer (285 mL), a single measure of spirits (30 mL), a medium-sized glass of wine (120 mL), or 1 measure of an aperitif (60 mL)
- A disorder strongly associated with osteoporosis. These include rheumatoid arthritis, type I (insulin dependent) diabetes, osteogenesis imperfecta in adults, untreated long-standing
hyperthyroidism, hypogonadism or premature menopause (less than 45 years), chronic malnutrition or malabsorption, and chronic liver disease

- Current exposure to oral glucocorticoids or the patient has been exposed to oral glucocorticoids for more than 3 months at a dose of prednisolone of 5 mg daily or more (or equivalent doses of other glucocorticoids)

A 2011 joint position statement from the International Society for Clinical Densitometry and the International Osteoporosis Foundation includes the official position that FRAX with BMD predicts risk of fracture better than clinical risk factors or BMD alone. In addition, the joint position statement states that measurements other than BMD or T score at the femoral neck by DXA are not recommended for use with FRAX.

The FRAX tool does not include a recommendation about which patients to further assess or treat. The FRAX website states that this is a matter of clinical judgment and recommendations may vary by country. The FRAX calculation tool can be accessed at the following address: https://www.shef.ac.uk/FRAX/tool.jsp.

National Osteoporosis Foundation
The 2014 Clinician's Guide to Prevention and Treatment of Osteoporosis published by the National Osteoporosis Foundation (NOF, 2014) has identified the following medical conditions and medications as risk factors for osteoporosis-related fracture:

Genetic Factors
- Cystic fibrosis
- Homocystinuria
- Osteogenesis imperfecta
- Ehlers-Danlos
- Hypophosphatasia
- Parental history of hip fracture
- Gaucher's disease
- Porphyria
- Glycogen storage diseases
- Marfan syndrome
- Riley-Day syndrome
- Hemochromatosis
- Menkes steely hair syndrome

Hypogonadal States
- Androgen insensitivity
- Hyperprolactinemia
- Turner's & Klinefelter's syndromes
- Anorexia nervosa and bulimia
- Panhypopituitarism
- Athletic amenorrhea
- Premature ovarian failure

Endocrine Disorders
- Central Obesity
- Diabetes mellitus
- Thyrotoxicosis
- Cushing's syndrome
- Hyperparathyroidism

Gastrointestinal Disorders
- Celiac disease
- Inflammatory bowel disease
• Primary biliary cirrhosis
• Gastric bypass
• Malabsorption
• GI surgery
• Pancreatic disease

Hematologic Disorders
• Hemophilia
• Multiple myeloma
• Systemic mastocytosis
• Leukemia and lymphomas
• Sickle cell disease
• Thalassemia
• Monoclonal gammopathies

Rheumatic and Autoimmune Diseases
• Ankylosing spondylitis
• Lupus
• Rheumatoid arthritis

Neurological and musculoskeletal risk factors
• Epilepsy
• Multiple sclerosis
• Muscular dystrophy
• Parkinson’s disease
• Spinal cord injury
• Stroke

Miscellaneous Conditions and Diseases
• Alcoholism
• Emphysema
• Muscular dystrophy
• Amyloidosis
• End-stage renal disease
• Parenteral nutrition
• Chronic metabolic acidosis
• Epilepsy
• Post-transplant bone disease
• Congestive heart failure
• Idiopathic scoliosis
• Prior fracture as an adult
• Depression
• Multiple sclerosis
• Sarcoidosis
• Low body weight

Medications
• Aluminum (in antacids)
• Anticoagulants (heparin)
• Anticonvulsants
• Aromatase inhibitors
• Barbiturates
• Cancer chemotherapeutic drugs
• Depo-medroxyprogesterone (premenopausal contraception)
• Glucocorticoids (greater than or equal to 5 mg/day of prednisone or equivalent for three months)
6.01.01 Bone Mineral Density Studies

- Gonadotropin releasing hormone agonists
- Lithium cyclosporine A and tacrolimus
- Methotrexate
- Parental nutrition
- Proton pump inhibitors
- Selective serotonin reuptake inhibitors
- Taxotifen (premenopausal use)
- Thiazolidinediones (such as Actos® and Avandia®)
- Thyroid hormones (in excess)

Bone Mineral Density Technologies

Ultrasound densitometry is an office-based technology. As discussed further in the Rationale section, it is unknown whether this technology can be used to predict response to pharmacologic therapy (i.e., reduce fractures).

Dual x-ray absorptiometry (DXA) of axial central sites (i.e., hip and spine) is the most commonly used technique, but peripheral (appendicular) DXA and quantitative computed tomography (QCT) scanning are sometimes used, based on local availability. Peripheral measurement can identify patients with low bone mass but does not predict response to pharmacologic therapy and is not a substitute for central DXA measurements. Therefore, central DXA (hip or spine) is required for both the initial diagnosis and repeat bone mineral density (BMD) assessments.

Peripheral measurement of BMD may be appropriate:
- If the hip/spine or hip/hip cannot be done or the patient is over the table limit for weight
- Hyperparathyroidism, where the forearm is essential for diagnosis

In pediatric patients, total body calcium is preferred because it helps reduce following patients with growing bones. This applies to pediatric patients who are not skeletally mature, as documented by nonclosure of growth plates (e.g., 15 years of age or younger).

Coding

Effective July 1, 2018, a new Category III CPT code describes Pulse-Echo Ultrasound:
- 0508T: Pulse-echo ultrasound bone density measurement resulting in indicator of axial bone mineral density, tibia

The following CPT codes identify BMD testing technologies:
- 77078: Computed tomography, bone mineral density study, 1 or more sites, axial skeleton (e.g., hips, pelvis, spine)
- 77080: Dual-energy X-ray absorptiometry (DXA), bone density study, 1 or more sites; axial skeleton (e.g., hips, pelvis, spine)
- 77081: Dual-energy X-ray absorptiometry (DXA), bone density study, 1 or more sites; appendicular skeleton (peripheral) (e.g., radius, wrist, heel)
- 76977: Ultrasound bone density measurement and interpretation, peripheral site(s), any method

Single- and dual-photon absorptiometry are now rarely used and may be considered obsolete. The CPT codes for these techniques are:
- 78350: Bone density (bone mineral content) study, 1 or more sites; single photon absorptiometry
- 78351: Bone density (bone mineral content) study, 1 or more sites; dual photon absorptiometry, 1 or more sites

Effective July 1, 2019, the following Category III CPT codes describe quantitative computed tomography technology:
- 0554T: Bone strength and fracture risk using finite element analysis of functional data, and bone-mineral density, utilizing data from a computed tomography scan; retrieval and
transmission of the scan data, assessment of bone strength and fracture risk and bone mineral density, interpretation and report.

- **0555T**: Bone strength and fracture risk using finite element analysis of functional data, and bone-mineral density, utilizing data from a computed tomography scan; retrieval and transmission of the scan data.

- **0557T**: Bone strength and fracture risk using finite element analysis of functional data, and bone-mineral density, utilizing data from a computed tomography scan; interpretation and report.

- **0558T**: Computed tomography scan taken for the purpose of biomechanical computed tomography analysis.

Description

Bone mineral density (BMD) studies can be used to identify individuals with osteoporosis and monitor response to osteoporosis treatment, with the goal of reducing the risk of fracture. Bone density is most commonly evaluated with dual x-ray absorptiometry (DXA); other technologies are available.

Related Policies

- Bone Turnover Markers for the Diagnosis and Management of Osteoporosis and Diseases Associated with High Bone Turnover
- Vertebral Fracture Assessment with Densitometry

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

Regulatory Status

Devices that measure bone density have been cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process. Some examples are described in Table 1:

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Company</th>
<th>510(k) number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aria</td>
<td>GE Medical Systems</td>
<td>K180782</td>
</tr>
<tr>
<td>Ge Lunar Dxa Bone Densitometers with Enc</td>
<td>GE Medical Systems</td>
<td>K161682</td>
</tr>
<tr>
<td>Tbs Insight</td>
<td>Medimaps Group Sa</td>
<td>K152299</td>
</tr>
<tr>
<td>Single Energy (Se) Femur Exams</td>
<td>Hologic, Inc.</td>
<td>K130277</td>
</tr>
<tr>
<td>Tbs Insight</td>
<td>Medimaps Group Sa</td>
<td>K121716</td>
</tr>
<tr>
<td>Virtuost</td>
<td>O.N. Diagnostics</td>
<td>K13725</td>
</tr>
<tr>
<td>Accudxa2</td>
<td>Lone Oak Medical Technologies, Llc</td>
<td>K13616</td>
</tr>
<tr>
<td>Ultrascan 650</td>
<td>Cyberlogic, Inc.</td>
<td>K161919</td>
</tr>
</tbody>
</table>
In addition, some ultrasound bone sonometers have been approved by the FDA through the premarket approval process. One example is the Sahara® Clinical Bone Sonometer (Hologic), which received approval in March 1998. Its intended use is for quantitative ultrasound measurement of the calcaneus (heel bone), the results of which can be used in conjunction with other clinical risk factors as an aid in the diagnosis of osteoporosis and medical conditions leading to reduced bone density, and ultimately in the determination of fracture risk.

Rationale

Background

Bone Mineral Density

Risk factors for fracture include low bone mass, low bone strength, a personal history of fracture as an adult, or a history of fracture in a first-degree relative. Osteoporosis, defined as low bone mass leading to an increased risk of fragility fractures, is an extremely common disease in the elderly population due to age-related bone loss in both sexes and menopause-related bone loss in women. The World Health Organization has diagnostic thresholds for osteoporosis based on BMD measurements compared with a T score, which is the standard deviation difference between an individual's BMD and that of a young adult reference population. Conditions that can cause or contribute to osteoporosis include lifestyle factors such as low intake of calcium, high intake of alcohol or cigarette smoking, and thinness. Other risk factors for osteoporosis include certain endocrine, hematologic, gastrointestinal tract and genetic disorders, hypogonadal states, and medications.

BMD can be measured either centrally (i.e., hip or spine) or peripherally (i.e., wrist, finger, heel) sites. While BMD measurements are predictive of fragility fractures at all sites, central measurements of the hip and spine are the most predictive. Fractures of the hip and spine (i.e., vertebral fractures) are also considered to be the most clinically relevant. BMD is typically expressed as a T score.

The utility of screening BMD measurements can be established by demonstrating that screening identifies a population at increased risk of fracture and that, by treating those at-risk individuals, the rate of fractures is reduced thereby lowering fracture-related morbidity and mortality. These potential benefits of screening should outweigh the risks of screening (radiation exposure) or false-positives (initiation of unnecessary treatment).

Osteoporosis Treatment

Treatment of osteoporosis includes both lifestyle measures (e.g., increased intake of calcium and vitamin D, exercise, smoking cessation) and pharmacologic measures. Current pharmacologic options include bisphosphonates such as alendronate (i.e., Fosamax), selective estrogen receptor modulators such as raloxifene (i.e., Evista), the recombinant human parathyroid hormone teriparatide (i.e., Forteo), and calcitonin. An updated 2014 systematic review funded by the Agency for Healthcare Research and Quality found good-quality evidence that bisphosphonates, denosumab, teriparatide, and raloxifene reduce fracture risk in postmenopausal women with BMD in the osteoporotic range and/or preexisting hip or vertebral fracture.1
The decision to perform a bone density assessment should be based on an individual’s fracture risk profile and skeletal health assessment. In addition to age, sex, and BMD, risk factors included in the World Health Organization Fracture Risk Assessment Tool are:

- Low body mass index
- Parental history of hip fracture
- Previous fragility fracture in adult life (i.e., occurring spontaneously or a fracture arising from trauma, which, in a healthy individual, would not have resulted in a fracture)
- Current smoking or 3 or more units of alcohol daily, where a unit is equivalent to a standard glass of beer (285 mL), a single measure of spirits (30 mL), a medium-sized glass of wine (120 mL), or 1 measure of an aperitif (60 mL)
- A disorder strongly associated with osteoporosis, which includes rheumatoid arthritis, type I (insulin-dependent) diabetes, osteogenesis imperfecta in adults, untreated long-standing hyperthyroidism, hypogonadism or premature menopause (<45 years), chronic malnutrition or malabsorption, and chronic liver disease
- Current exposure to oral glucocorticoids or exposure to oral glucocorticoids for more than three months at a dose of prednisolone 5 mg daily or more (or equivalent doses of other glucocorticoids)

Measurement Tools

Available diagnostic tools use either X-rays or ultrasound. X-ray based methods measure BMD. However, studies suggest that in addition to measuring structural aspects of the bone by assessing BMD, other mechanical features and elastic properties of the bone are also important to predict the risk of fractures. X-ray based methods cannot assess these properties and therefore use of alternative methodologies such as ultrasound densitometry and quantitative computed tomography have been explored. The most commonly used technologies are described next.

Dual X-Ray Absorptiometry

DXA is the most commonly used technique to measure BMD because of its ease of use, low radiation exposure, and its ability to measure BMD at both the hip and spine. DXA can also be used to measure peripheral sites, such as the wrist and finger. DXA generates two x-ray beams of different energy levels to scan the region of interest and measures the difference in attenuation as the low- and high-energy beams pass through the bone and soft tissue. The low-energy beam is preferentially attenuated by bone, while the high-energy beam is attenuated by both bone and soft tissue. This difference in attenuation between the two beams allows for correction for the irregular masses of soft tissue, which surround the spine and hip, and therefore the measurement of bone density at those sites.

Quantitative Computed Tomography

Quantitative computed tomography depends on the differential absorption of ionizing radiation by calcified tissue and is used for central measurements only. Compared with DXA, quantitative computed tomography is less readily available and associated with relatively high radiation exposure and relatively high cost. Analysis of previously obtained clinical computed tomography scans of the pelvis might provide an alternative method of assessing biomechanical bone strength.

Ultrasound Densitometry

Ultrasound densitometry is a technique for measuring BMD at peripheral sites, typically the heel but also the tibia and phalanges. Compared with osteoporotic bone, normal bone demonstrates higher attenuation of the ultrasound wave and is associated with a greater velocity of the wave passing through bone. Ultrasound densitometry has no radiation exposure, and machines may be purchased for use in an office setting.

Single- and dual-photon absorptiometry and radiographic absorptiometry are now rarely used and may be considered obsolete.
Note: Vertebral fracture assessment with DXA is addressed elsewhere (see Blue Shield of California Medical Policy: Vertebral Fracture Assessment with Densitometry).

Literature Review

Early versions of this evidence review were informed in part on 1998 guidelines from the National Osteoporosis Foundation and 2 Blue Cross Blue Shield Association Technology Evaluation Center (TEC) Assessments (1999, 2002). The evidence review has since been updated regularly and the most recent literature review was performed through October 1, 2018. Following is a summary of key literature to date.

Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life, and ability to function including benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of a technology, two domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. Randomized controlled trials are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

Initial Measurement of Bone Mineral Density

Clinical Context and Therapy Purpose

The purpose of BMD measurement in patients who have risk factors for osteoporosis is to assess bone health and guide treatment.

The question addressed in this evidence review is: Does BMD testing with dual x-ray absorptiometry (DXA) improve the net health outcome in individuals with risk factors for osteoporosis?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest are individuals with risk factors for osteoporosis.

Interventions
The test being considered is BMD testing with central DXA.

Comparators
The following practices are currently being used to make treatment decisions: clinical risk factor assessment.

Outcomes
The general outcomes of interest are the occurrence of fractures and effects on quality of life.
Timing
Pharmacological treatment for osteopenia is recommended for three to five years. Monitoring of fractures may occur until the end of life; these are typically measured within ten years after screening.

Setting
The setting is outpatient primary care.

Review of Evidence
A 2018 systematic review for the U.S. Preventive Services Task Force (USPSTF) evaluated the evidence on screening for osteoporosis. The review considered centrally measured DXA to be the reference standard against which other screening measures were evaluated. Randomized controlled trials included in the systematic review have shown that osteoporosis medications are effective at reducing fracture risk in postmenopausal women with BMD in the osteoporotic range identified by central DXA. A noted limitation of the review was that treatment studies relied on DXA BMD scores to enroll participants into trials and that risk factors beyond bone density, such as bone quality, contribute to osteoporotic fractures. Therefore, “approaches that rely on BMD measurement wholly or in part may not be the most accurate approaches for identifying patients at highest risk for osteoporotic fractures.”

Section Summary: Initial Measurement of BMD
Central DXA is the most widely accepted method for measuring BMD. BMD measurements with central DXA identify individuals at increased risk of fracture, and osteoporosis medications reduce fracture risk in the population identified as osteoporotic by central DXA. Therefore, test results with initial central DXA have been successfully used to guide therapy.

Repeat Measurement of BMD for Individuals without Osteoporosis on Initial Screen

Clinical Context and Therapy Purpose
The purpose of BMD measurement in patients without osteoporosis on the initial screen is to assess changes in bone health and guide treatment.

The question addressed in this evidence review is: Does repeat BMD testing with central DXA improve the net health outcome in individuals with risk factors for osteoporosis?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest are individuals without osteoporosis on the initial screen.

Interventions
The test being considered is repeat BMD testing with central DXA.

Comparators
The following practices are currently being used to make treatment decisions: clinical risk factor assessment without BMD testing.

Outcomes
The general outcomes of interest are the occurrence of fractures and effects of fractures on quality of life.

Timing
Monitoring of fractures may occur until the end of life; these are typically measured within 10 years after screening.

Setting
The setting is outpatient primary care.
Review of Evidence
The 2018 USPSTF systematic review of the evidence on screening interval identified 2 studies with variable BMD that suggested no advantage to repeated bone measurement testing.7,8. However, prognostic modeling from other studies suggested that the optimal screening interval varies by baseline BMD, and that age and use of hormone replacement therapy might also influence optimal screening intervals.9,10,11. Review of evidence by the Agency for Healthcare Research and Quality Southern California Evidence-Based Practice Center for the American College of Physicians identified moderate quality evidence that women do not require frequent monitoring, with 10% of women with normal or mildly osteopenic DXA scores progressing to osteopenia within 15 years.12,13.

Section Summary: Repeat Measurement of BMD for Individuals without Osteoporosis on Initial Screen
Little research has been done on the frequency of BMD monitoring for osteoporosis. The available research has evaluated repeat measurement with central DXA. Evidence on whether repeat measurements add to risk prediction compared with a single measurement is mixed. Although the optimal interval may differ depending on risk factors, current evidence does not support frequent monitoring.

Serial Measurement of Central BMD to Monitor Response to Pharmacologic Treatment
Clinical Context and Therapy Purpose
The purpose of BMD measurement in patients who are being evaluated for osteoporosis is to guide treatment.

The question addressed in this evidence review is: Does BMD testing with central DXA improve the net health outcome in individuals who are being treated for osteoporosis?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest are individuals who are being treated for osteoporosis.

Interventions
The test being considered is repeat BMD testing with central DXA.

Comparators
The following practices are currently being used to make treatment decisions: duration of treatment as it relates to clinical risk assessment without BMD testing.

Outcomes
The general outcomes of interest are the occurrence of fractures and effects on quality of life.

Timing
Pharmacological treatment for osteopenia is recommended for three to five years. Monitoring of fractures may occur until the end of life; these are typically measured within ten years after screening.

Setting
The setting is outpatient primary care.

Review of Evidence
Several moderate quality studies included in the Agency for Healthcare Research and Quality report showed that fracture risk may be reduced with pharmacologic treatment even when BMD does not increase.12,13. In the Fracture Intervention Trial, 6459 women randomized to bisphosphonates or to placebo underwent annual bone density scans. A secondary analysis
found an average within-person variation in BMD measurement of 0.013 g/cm², which was substantially higher than the average annual increase in BMD (0.0085 g/cm²) in the alendronate group.¹⁴

Section Summary: Serial Measurement of Central BMD to Monitor Response to Bisphosphonate Treatment

There is no high-quality evidence to guide how often to monitor BMD during osteoporosis treatment. Within-person variation in measurement may exceed treatment effects, and fracture risk may be reduced in the absence of changes in BMD. Together, these results indicate that frequent (i.e., every two years) repeat monitoring has low value.

Ultrasound Densitometry, or Quantitative Computed Tomography, or DXA Analysis of Peripheral Sites

Clinical Context and Therapy Purpose

The purpose of bone density measurement with methods other than central DXA in patients who have risk factors for osteoporosis is guide treatment.

The question addressed in this evidence review is: Does BMD testing with tests other than central DXA improve the net health outcome in individuals with risk factors for osteoporosis?

The following PICOTS were used to select literature to inform this review.

Patients

The relevant population of interest are individuals with risk factors for osteoporosis.

Interventions

The test being considered are bone tests other than central DXA.

Comparators

The following practices are currently being used to make treatment decisions: clinical risk factor assessment following DXA analysis of central sites.

Outcomes

The general outcomes of interest are the occurrence of fractures and effects on quality of life.

Timing

Pharmacological treatment for osteopenia is recommended for three to five years. Monitoring of fractures may occur until the end of life; these are typically measured within ten years after screening.

Setting

The setting is outpatient primary care.

Review of Evidence

In the review of evidence for the USPSTF, 10 studies were identified that compared calcaneal quantitative ultrasound to central DXA.⁶ Pooled estimates of area under the curve were 0.77 (95% CI, 0.72-0.81; 1969 participants) in women and 0.80 (95% CI, 0.67-0.94; 5142 participants) in men. Similar findings were observed for digital x-ray radiogrammetry, peripheral DXA, and radiographic absorptiometry. For predicting osteoporotic fractures, no meaningful differences in accuracy by type of bone test were observed. A study by Adams et al (2018) is consistent with the results of the USPSTF systematic review, showing the prediction of fracture with a “biomechanical” computed tomography analyzed on previously taken clinical computed tomography scans that were at least as good as DXA.¹⁵ No studies were identified that guided treatment based on computed tomography scan results.
Section Summary: Ultrasound Densitometry, or Quantitative Computed Tomography, or DXA Analysis of Peripheral Sites

In comparison with central DXA, other measures of bone health showed area under the curves around 0.80 for the identification of osteoporosis. No studies have shown that they can select patients who benefit from treatment for osteoporosis. There is little to no evidence on the usefulness of repeat measurement of BMD using these techniques.

Summary of Evidence

For individuals who are eligible for screening of BMD based on risk factor assessment who receive DXA analysis of central sites (hip or spine), the evidence includes systematic reviews of randomized controlled trials and cohort studies. The relevant outcomes are morbid events, functional outcomes, quality of life, hospitalizations, and medication use. Central DXA is the most widely accepted method for measuring BMD and is the reference standard against which other screening tests are evaluated. BMD measurements with central DXA identify individuals at increased risk of fracture, and osteoporosis medications reduce fracture risk in the population identified as osteoporotic by central DXA. Therefore, test results with initial central DXA can be used to guide therapy. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals without osteoporosis on initial screen who receive repeat DXA analysis of central sites (hip or spine), the evidence includes systematic reviews of large cohort and observational studies. The relevant outcomes are morbid events, functional outcomes, quality of life, hospitalizations, and medication use. Little research has been done on the frequency of BMD monitoring for osteoporosis. The available research has evaluated repeat measurement with central DXA. Evidence on whether repeat measurements add to risk prediction compared with a single measurement is mixed. Although the optimal interval may differ depending on risk factors, current evidence does not support repeat monitoring in patients with BMD on DXA in the normal range. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are receiving pharmacologic treatment for osteoporosis who receive repeat DXA analysis of central sites (hip or spine), the evidence includes systematic reviews of randomized controlled trials and observational studies. The relevant outcomes are morbid events, functional outcomes, quality of life, hospitalizations, and medication use. There is no high-quality evidence to guide how often to monitor BMD during osteoporosis treatment. Within-person variation in measurement may exceed treatment effects, and fracture risk has been shown to be reduced in some treatment studies in the absence of changes in BMD. Together, these results suggest that frequent (i.e., every two years) repeat monitoring has low value. It is unclear whether DXA at the end of the initial five years of therapy is sufficiently accurate to guide subsequent therapy. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are eligible for screening of BMD based on risk factor assessment who receive ultrasound densitometry, or quantitative computed tomography, or DXA analysis of peripheral sites, the evidence includes observational studies and systematic reviews. The relevant outcomes are morbid events, functional outcomes, quality of life, hospitalizations, and medication use. In comparison with central DXA, other measures of bone health showed area under the curves around 0.80 for the identification of osteoporosis. These technologies are not commonly used for BMD measurements in practice, and no studies have shown that they can select patients who benefit from treatment for osteoporosis. There is little to no evidence on the usefulness of repeat measurement of BMD using these techniques. The evidence is insufficient to determine the effects of the technology on health outcomes.
Supplemental Information
Clinical Input from Physician Specialty Societies and Academic Medical Centers
While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

In response to requests from Blue Cross Blue Shield Association, input was received from 4 physician specialty societies (7 reviewers) and 2 academic medical centers in 2008. In addition, seven unsolicited letters were received through two additional physician specialty societies. Reviewers agreed with the evidence review statement that an initial bone mineral density (BMD) test may be medically necessary. They also recommended an interval of three to five years between measurements in subjects who previously tested normal, depending on risk factors. Reviewers considered serial measurement of BMD important to guide treatment decisions (e.g., continuing or changing medication).

Based on the consensus of clinical opinion on the value of the information provided by monitoring treatment response, serial BMD measurements (at least a two-year interval) may be considered appropriate when this information will impact patient care. It should be noted that, with the margin of error of BMD measurements with dual x-ray absorptiometry, questions remain about the interval over which a clinically significant change can be observed. The minimal clinically significant change also raises concerns about the potential for overinterpretation of small fluctuations with repeat testing.

Practice Guidelines and Position Statements
American College of Obstetricians and Gynecologists
In 2012 (reaffirmed 2016), the American College of Obstetricians and Gynecologists (ACOG) updated its guidelines on managing osteoporosis in women. The guidelines recommended that BMD screening should begin for all women at age 65 years. In addition, the ACOG recommended screening for women younger than 65 years in whom the Fracture Risk Assessment Tool indicates a 10-year risk of osteoporotic fracture of at least 9.3%. Alternatively, ACOG recommended BMD screening for women younger than 65 or with any of the following risk factors (they are similar, but not identical to risk factors in the Fracture Risk Assessment Tool):
- Personal medical history of a fragility fracture
- Parental medical history of hip fracture
- Weight less than 127 lb
- Medical causes of bone loss (i.e., medications or disease)
- Current smoker
- Alcoholism
- Rheumatoid arthritis
- For women who begin medication treatment for osteoporosis, a repeat BMD is recommended one to two years later to assess effectiveness. If BMD is improved or stable, additional BMD testing (in the absence of new risk factors) is not recommended. The guideline notes that it generally takes 18 to 24 months to document a clinically meaningful change in BMD and thus a 2-year interval after treatment initiation is preferred to 1 year.
- The guidelines do not specifically discuss repeat BMD screening for women who have a normal finding on the initial test.
- Routine BMD screening is not recommended for newly menopausal women as a “baseline” screen.

National Osteoporosis Foundation
The NOF (2014) updated its practice guidelines. The NOF guidelines recommended that all postmenopausal women and men ages 50 and older be evaluated clinically for osteoporosis risk to determine the need for BMD testing. Indications for BMD testing included:
• “[W]omen age 65 and older and men age 70 and older” regardless of clinical risk factors
• “[P]ostmenopausal women and men above age 50-69, based on risk factors profile”
• “[P]ostmenopausal women and men age 50 and older who have had an adult age fracture…”
• “Adults with a condition ... or taking a medication ... associated with low bone mass or bone loss“

The NOF stated that measurements for monitoring patients should be performed in accordance with medical necessity, expected response, and in consideration of local regulatory requirements. The NOF recommended that repeat BMD assessments generally agree with Medicare guidelines of every two years, but recognized that testing more frequently may be warranted in certain clinical situations.

The NOF also indicated that:
“Central DXA [dual x-ray absorptiometry] assessment of the hip or lumbar spine is the ‘gold standard’ for serial assessment of BMD. Biological changes in bone density are small compared to the inherent error in the test itself, and interpretation of serial bone density studies depends on appreciation of the smallest change in BMD that is beyond the range of error of the test. This least significant change (LSC) varies with the specific instrument used, patient population being assessed, measurement site, technologist’s skill with patient positioning and test analysis, and the confidence intervals used. Changes in the BMD of less than 3-6 % at the hip and 2-4 % at the spine from test to test may be due to the precision error of the testing itself.”

American College of Physicians
The guidelines from the American College of Physicians (2017) on the treatment of osteoporosis recommended against bone density monitoring during the 5-year pharmacologic treatment period of osteoporosis in women (weak recommendation, low-quality evidence).12 The American College of Physicians noted that data from several studies showed a reduction in fractures with pharmacologic treatment, even when BMD did not increase. In addition, current evidence “does not support frequent monitoring of women with normal bone density for osteoporosis, because data showed that most women with normal CSA scores did not progress to osteoporosis with 15 years.”

American College of Radiology
Appropriateness criteria from the American College of Radiology, updated in 201718, state that BMD measurement is indicated whenever a clinical decision is likely to be directly influenced by the result of the test. Indications for DXA of the lumbar spine and hip included but were not limited to the following patient populations:
1. All women age 65 years and older and men age 70 years and older (asymptomatic screening)
2. Women younger than age 65 years who have additional risk for osteoporosis, based on medical history and other findings. Additional risk factors for osteoporosis include:
 a. Estrogen deficiency
 b. A history of maternal hip fracture that occurred after the age of 50 years
 c. Low body mass (less than 127 lb or 57.6 kg)
 d. History of amenorrhea (more than 1 year before age 42 years)
3. Women younger than age 65 years or men younger than age 70 years who have additional risk factors, including:
 a. Current use of cigarettes
 b. Loss of height, thoracic kyphosis
4. Individuals of any age with bone mass osteopenia, or fragility fractures on imaging studies such as radiographs, CT[computed tomography], or MRI [magnetic resonance imaging]
5. Individuals age 50 years and older who develop a wrist, hip, spine, or proximal humerus fracture with minimal or no trauma, excluding pathologic fractures
Individuals of any age who develop 1 or more insufficiency fractures
Individuals being considered for pharmacologic therapy for osteoporosis
Individuals being monitored to:
 a. Assess the effectiveness of osteoporosis drug therapy
 b. Follow-up medical conditions associated with abnormal BMD

International Society for Clinical Densitometry
The 2013 update of the International Society for Clinical Densitometry guidelines recommended bone density testing in the following patients:
- Women age 65 and older
- For post-menopausal women younger than age 65 a bone density test is indicated if they have a risk factor for low bone mass fracture such as:
 - Low body weight
 - Prior fracture
 - High risk medication use
 - Disease or condition associated with bone loss
- Women during the menopausal transition with clinical risk factors for fracture, such as low bone weight, prior fracture or high-risk medication use
- Men aged 70 and older
- Men under < 70 years ... if they have a risk factor for low bone mass such as:
 - Low body weight
 - Prior fracture
 - High risk medication use
 - Disease or condition associated with bone loss
- Adults with a fragility fracture
- Adults with a disease or condition associated with low bone mass or bone loss...
- Anyone being considered for pharmacologic therapy
- Anyone being treated, to monitor treatment effect
- Anyone not receiving therapy in whom evidence of bone loss would lead to treatment

American Association of Clinical Endocrinologists et al
The American Association of Clinical Endocrinologists and American College of Endocrinology (2016) issued updated joint guidelines on the diagnosis and treatment of postmenopausal osteoporosis. The guidelines listed the potential uses for BMD measurements in postmenopausal women as:
- Screening for osteoporosis
- Establishing the severity of osteoporosis or bone loss...
- Determining fracture risk...
- Identifying candidates for pharmacologic intervention
- Assessing changes in bone density over time...
- Enhancing acceptance of, and perhaps adherence with, treatment
- Assessing skeletal consequences of diseases, conditions, or medications known to cause bone loss

U.S. Preventive Services Task Force Recommendations
The USPSTF (2018) updated its recommendations on screening for osteoporosis with bone density measurements. The USPSTF recommended screening for osteoporosis in women aged 65 years or older and in postmenopausal women younger than 65 years at increased risk of osteoporosis. The supporting document notes there are multiple instruments to predict risk for low BMD, including the Fracture Risk Assessment Tool. The updated USPSTF recommendations stated that the scientific evidence is "insufficient" to assess the balance of benefits and harms of screening for osteoporosis screening in men. The Task Force did not recommend specific screening tests but said the most commonly used tests are DXA of the hip and lumbar spine and quantitative ultrasound of the calcaneus.
The USPSTF concluded the evidence base is sparse on screening interval. While two studies showed no advantage to repeated testing, other evidence suggested that the optimal screening interval may vary by baseline BMD, age, and use of hormone replacement therapy.

Medicare National Coverage

The Centers for Medicare and Medicaid pays for a screening bone mass measurement (BMM) once every 2 years (at least 23 months have passed since the month the last covered BMM was performed). When medically necessary, Medicare may pay for more frequent BMMs. Examples include, but are not limited to, monitoring beneficiaries on long-term glucocorticoid (steroid) therapy of more than three months, and confirming baseline BMMs to permit monitoring of beneficiaries in the future.

Conditions for coverage of BMM can be found in chapter 15, section 80.5 of Pub. 100-02, Medicare Benefit Policy Manual. Medicare covers BMM under the following conditions:

1. Is ordered by the physician or qualified nonphysician practitioner who is treating the beneficiary following an evaluation of the need for a BMM and determination of the appropriate BMM to be used.
2. Is performed under the appropriate level of physician supervision as defined in 42 CFR 410.32(b).
3. Is reasonable and necessary for diagnosing and treating the condition of a beneficiary who meets the conditions described in §80.5.6.
4. In the case of an individual being monitored to assess the response to or efficacy of an FDA-approved osteoporosis drug therapy, is performed with a dual-energy x-ray absorptiometry system (axial skeleton).
5. In the case of any individual who meets the conditions of 80.5.6 and who has a confirmatory BMM, is performed by a dual-energy x-ray absorptiometry system (axial skeleton) if the initial BMM was not performed by a dual-energy x-ray absorptiometry system (axial skeleton). A confirmatory baseline BMM is not covered if the initial BMM was performed by a dual-energy x-ray absorptiometry system (axial skeleton).

Ongoing and Unpublished Clinical Trials

A search of ClinicalTrials.gov in November 2018 did not identify any ongoing or unpublished trials that would likely influence this review.

References

5. Blue Cross Blue Shield Association Technology Evaluation Center (TEC). Ultrasonography of peripheral sites for diagnosing and selecting patients for pharmacologic treatment for osteoporosis. TEC Assessments. 2002;Volume 17:Tab 5. PMID
Documentation for Clinical Review

Please provide the following documentation (if/when requested):

- History and physical from the prescribing MD including:
 - Previous treatment and response, and clinical risk factors for osteoporosis-related fracture
 - Additional reports including: Previous bone mineral density measurement, x-ray reports and laboratory reports

Post Service
- DXA report for date of service billed

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy. Inclusion or exclusion of codes does not constitute or imply member coverage or provider reimbursement.

MN/IE
The following services may be considered medically necessary in certain instances and investigational in others. Services may be considered medically necessary when policy criteria are met. Services may be considered investigational when the policy criteria are not met or when the code describes application of a product in the position statement that is investigational.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0508T</td>
<td>Pulse-echo ultrasound bone density measurement resulting in indicator of axial bone mineral density, tibia (Code effective 7/1/2018)</td>
</tr>
<tr>
<td></td>
<td>0554T</td>
<td>Bone strength and fracture risk using finite element analysis of functional data, and bone-mineral density, utilizing data from a computed tomography scan; retrieval and transmission of the scan data, assessment of bone strength and fracture risk and bone mineral density, interpretation and report (Code effective 7/1/2019)</td>
</tr>
<tr>
<td></td>
<td>0555T</td>
<td>Bone strength and fracture risk using finite element analysis of functional data, and bone-mineral density, utilizing data from a computed tomography scan; retrieval and transmission of the scan data (Code effective 7/1/2019)</td>
</tr>
<tr>
<td></td>
<td>0557T</td>
<td>Bone strength and fracture risk using finite element analysis of functional data, and bone-mineral density, utilizing data from a computed tomography scan; interpretation and report (Code effective 7/1/2019)</td>
</tr>
<tr>
<td></td>
<td>0558T</td>
<td>Bone strength and fracture risk using finite element analysis of functional data, and bone-mineral density, utilizing data from a computed tomography scan; interpretation and report (Code effective 7/1/2019)</td>
</tr>
<tr>
<td></td>
<td>76977</td>
<td>Computed tomography scan taken for the purpose of biomechanical computed tomography analysis (Code effective 7/1/2019)</td>
</tr>
<tr>
<td></td>
<td>77078</td>
<td>Ultrasound bone density measurement and interpretation, peripheral site(s), any method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computed tomography, bone mineral density study, 1 or more sites, axial skeleton (e.g., hips, pelvis, spine)</td>
</tr>
</tbody>
</table>
Type Code Description

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>77080</td>
<td>Dual-energy X-ray absorptiometry (DXA), bone density study, 1 or more sites; axial skeleton (e.g., hips, pelvis, spine)</td>
</tr>
<tr>
<td></td>
<td>77081</td>
<td>Dual-energy X-ray absorptiometry (DXA), bone density study, 1 or more sites; appendicular skeleton (peripheral) (e.g., radius, wrist, heel)</td>
</tr>
<tr>
<td></td>
<td>78350</td>
<td>Bone density (bone mineral content) study, 1 or more sites; single photon absorptiometry</td>
</tr>
<tr>
<td></td>
<td>78351</td>
<td>Bone density (bone mineral content) study, 1 or more sites; dual photon absorptiometry, 1 or more sites</td>
</tr>
</tbody>
</table>

HCPCS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G0130 Single energy x-ray absorptiometry (SEXA) bone density study, one or more sites; appendicular skeleton (peripheral) (e.g., radius, wrist, heel)</td>
</tr>
</tbody>
</table>

ICD-10 Procedure

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BP48ZZ1 Ultrasonography of Right Shoulder, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BP49ZZ1 Ultrasonography of Left Shoulder, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BP4GZZ1 Ultrasonography of Right Elbow, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BP4HZZ1 Ultrasonography of Left Elbow, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BP4LZZ1 Ultrasonography of Right Wrist, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BP4MZZ1 Ultrasonography of Left Wrist, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BP4NZZ1 Ultrasonography of Right Hand, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BP4PZZ1 Ultrasonography of Left Hand, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BQ00ZZ1 Plain Radiography of Right Hip, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BQ01ZZ1 Plain Radiography of Left Hip, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BQ03ZZ1 Plain Radiography of Right Femur, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BQ04ZZ1 Plain Radiography of Left Femur, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BR00ZZ1 Plain Radiography of Cervical Spine, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BR07ZZ1 Plain Radiography of Thoracic Spine, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BR09ZZ1 Plain Radiography of Lumbar Spine, Densitometry</td>
</tr>
<tr>
<td></td>
<td>BR0GZZ1 Plain Radiography of Whole Spine, Densitometry</td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/02/2009</td>
<td>New Policy Policies combined: Bone Mineral Density Screening for Vertebral Fracture with Dual X-ray Absorptiometry (DEXA)</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>07/08/2010</td>
<td>Policy Revision Testing interval revised</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>01/12/2011</td>
<td>Policy Revision - Testing interval revised</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>04/01/2011</td>
<td>Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>03/13/2012</td>
<td>Coding Update</td>
<td>Administrative Review</td>
</tr>
<tr>
<td>01/01/2015</td>
<td>Coding Update</td>
<td>Administrative Review</td>
</tr>
<tr>
<td>08/31/2015</td>
<td>Policy title change from Bone Mineral Density and Vertebral Fracture Assessment Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>03/01/2017</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>05/01/2017</td>
<td>Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>05/01/2018</td>
<td>Coding update</td>
<td>Administrative Review</td>
</tr>
<tr>
<td>07/01/2018</td>
<td>Policy statement clarification</td>
<td>Administrative Review</td>
</tr>
<tr>
<td>11/01/2018</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
</tbody>
</table>
Definitions of Decision Determinations

Medically Necessary: A treatment, procedure, or drug is medically necessary only when it has been established as safe and effective for the particular symptoms or diagnosis, is not investigational or experimental, is not being provided primarily for the convenience of the patient or the provider, and is provided at the most appropriate level to treat the condition.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member's health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member's eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department. Please call (800) 541-6652 or visit the provider portal at www.blueshieldca.com/provider.

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.