Policy Statement

Breast reconstructive surgery using allogeneic acellular dermal matrix products (including each of the following: AlloDerm®, AlloMend®, Cortiva® [AlloMax™], DemaCELL™, DemaMatrix™, FlexHD®, FlexHD® Pliable™, Graftjacket®; see Policy Guidelines) may be considered medically necessary for any of the following:

I. When there is insufficient tissue expander or implant coverage by the pectoralis major muscle and additional coverage is required
II. When there is viable but compromised or thin postmastectomy skin flaps that are at risk of dehiscence or necrosis
III. The inframammary fold and lateral mammary folds have been undermined during mastectomy and reestablishment of these landmarks is needed

Treatment of chronic, noninfected, full-thickness diabetic lower-extremity ulcers may be considered medically necessary using any of the following tissue-engineered skin substitutes:

I. AlloPatch®
II. Apligraf®
III. Dermagraft®
IV. Integra® Omnigraft™ Dermal Regeneration Matrix (also known as Omnigraft™) and Integra Flowable Wound Matrix

Treatment of chronic, noninfected, partial- or full-thickness lower-extremity skin ulcers due to venous insufficiency, which have not adequately responded following a 1-month period of conventional ulcer therapy may be considered medically necessary using either of the following tissue-engineered skin substitutes:

I. Apligraf®
II. Oasis™ Wound Matrix

Treatment of dystrophic epidermolysis bullosa may be considered medically necessary using the following tissue-engineered skin substitutes:

- OrCel™ (for the treatment of mitten-hand deformity when standard wound therapy has failed and when provided in accordance with the humanitarian device exemption [HDE] specifications of the U.S. Food and Drug Administration [FDA])

Treatment of second- and third-degree burns may be considered medically necessary using either of the following tissue-engineered skin substitutes:

I. Epicel® (for the treatment of deep dermal or full-thickness burns comprising a total body surface area greater than or equal to 30% when provided in accordance with the HDE specifications of the FDA)
II. Integra® Dermal Regeneration Template

a Banked human tissue.
b FDA premarket approval.
c FDA 510(k) clearance.
d FDA-approved under an HDE

All other uses of the bioengineered skin and soft tissue substitutes listed above are considered investigational.

All other skin and soft tissue substitutes not listed above are considered investigational, including, but not limited to:
I. ACell® UBM Hydrated/Lyophilized Wound Dressing
II. AlloSkin™
III. AlloSkin™ RT
IV. Aongen™ Collagen Matrix
V. Architect® ECM, PX, FX
VI. ArthroFlex™ (Flex Graft)
VII. Atlas Wound Matrix
VIII. Avagen Wound Dressing
IX. AxoGuard® Nerve Protector (AxoGen)
X. Biobrane®/Biobrane-L
XI. CollaCare®
XII. CollaCare® Dental
XIII. Collagen Wound Dressing (Oasis Research)
XIV. CollaGUARD®
XV. CollaMend™
XVI. CollaWound™
XVII. CollaWrap™
XVIII. Collieva®
XIX. Conexa™
XX. Coreleader Colla-Pad
XXI. CorMatrix®
XXII. Cymetra™ (Micronized AlloDerm™)
XXIII. Cytal™ (previously MatriStem®)
XXIV. Demadapt™ Wound Dressing
XXV. Demadapt™ Wound Dressing
XXVI. DemaSpan™
XXVII. DressSkin
XXVIII. Durepair Regeneration Matrix®
XXIX. Endoform Dermal Template™
XXX. ENDURAGen™
XXXI. Excellagen
XXXII. ExpressGraft™
XXXIII. E-ZDerm™
XXXIV. FlexiGraft®
XXXV. GammaGraft
XXXVI. Graftjacket® Xpress, injectable
XXXVII. Helicoll™
XXXVIII. Hyalomatrix®
XXXIX. Hyalomatrix® PA
XL. hMatrix®
XLI. Integra™ Bilayer Wound Matrix
XLII. Keramatrix®
XLIII. Kerecis™
XLIV. MariGen™/Kerecis™ Omega3™
XLV. MatriDerm®
XLVI. Matrix HD™
XLVII. Mediskin®
XLVIII. MemoDerm™
XLIX. Microdem® biologic wound matrix
L. NeoForm™
LI. NuCel
LII. Oasis® Burn Matrix
LIII. Oasis® Ultra
LV. Pelvicol®/PelviSoft®
LV. Permacol™
LVI. PriMatrix™
LVII. PriMatrix™ Dermal Repair Scaffold
LVIII. PuraPly™ Wound Matrix (previously FortaDerm™)
LX. PuraPly™ AM (Antimicrobial Wound Matrix)
LXI. Puros® Demis
LXII. RegenePro™
LXII. Repiform®
LXII. Repriza™
LXIV. StrataGraft®
LXV. Strattice” (xenograft)
LXVI. Supratel®
LXVII. SurgiMend®
LXVIII. Talymed®
LXIX. TenoGlide™
LXX. TenSIX™ Acellular Dermal Matrix
LXXI. TissueMend
LXXII. TheraForm™ Standard/Sheet
LXXIII. TheraSkin®
LXXIV. TransCyte”
LXXV. TruSkin™
LXXVI. Veritas® Collagen Matrix
LXXVII. XCM Biologic® Tissue Matrix
LXXVIII. XenMatrix™ AB

NOTE: Refer to Appendix A to see the policy statement changes (if any) from the previous version.

Policy Guidelines

Note: Amniotic membrane and amniotic fluid products are reviewed in Blue Shield of California Medical Policy: Amniotic Membrane and Amniotic Fluid.

Clinical input has indicated that the various acellular dermal matrix products used in breast reconstruction have similar efficacy. The products listed are those that have been identified for use in breast reconstruction. Additional acellular dermal matrix products may become available for this indication.

Coding
Application of skin replacements and skin substitutes is reported with CPT codes 15040-15278. While codes 15040-15261 are specific to autografts and tissue-cultured autografts, codes 15271-15278 are specific to skin substitute grafts.

The following CPT code is a specific add-on for the use of these materials as an implant:
• 15777: Implantation of biologic implant (e.g., acellular dermal matrix) for soft tissue reinforcement (i.e., breast, trunk) (List separately in addition to code for primary procedure)

The HCPCS codes for these products used in outpatient and office settings are listed in the Coding section of the policy. There are also HCPCS modifiers to indicate whether the skin substitute is or is not used as a graft (i.e., surface use vs as an implant):
• JC: Skin substitute used as a graft
• JD: Skin substitute not used as a graft

Description

Bioengineered skin and soft tissue substitutes may be derived from human tissue (autologous or allogeneic), nonhuman tissue (xenographic), synthetic materials, or a composite of these
Bioengineered skin and soft tissue substitutes are being evaluated for a variety of conditions, including breast reconstruction and healing lower-extremity ulcers and severe burns. Acellular dermal matrix (ADM) products are also being evaluated for soft tissue repair.

Related Policies

- Amniotic Membrane and Amniotic Fluid
- Autologous Platelet-Derived Growth Factors for Wound Healing and Other Non-Orthopedic Conditions

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

Regulatory Status

A large number of artificial skin products are commercially available or in development. The following summary of commercially available skin substitutes describes those products that have substantial relevant evidence on efficacy.

ADM Products

Allograft ADM products derived from donated human skin tissue are supplied by tissue banks compliant with standards of the American Association of Tissue Banks and U.S. Food and Drug Administration (FDA) guidelines. The processing removes the cellular components (i.e., epidermis, all viable dermal cells) that can lead to rejection and infection. ADM products from human skin tissue are regarded as minimally processed and not significantly changed in structure from the natural material; FDA classifies ADM products as banked human tissue and, therefore, not requiring FDA approval.

- AlloDerm® (LifeCell Corp.) is an ADM (allograft) tissue-replacement product created from native human skin and processed so that the basement membrane and cellular matrix remain intact. Originally, AlloDerm® required refrigeration and rehydration before use. It is currently available in a ready-to-use product stored at room temperature. An injectable micronized form of AlloDerm® (Cymetra) is available.
- Cortiva® (previously marketed as AlloMax™ Surgical Graft and before that NeoForm™) is an acellular non-cross-linked human demis allograft.
- AlloPatch® (Musculoskeletal Transplant Foundation) is an acellular human demis allograft derived from the reticular layer of the demis and marketed for wound care. This product is also marketed as FlexHD® for postmastectomy breast reconstruction.
- FlexHD® and the newer formulation FlexHD® Pliable™ (Musculoskeletal Transplant Foundation) are an acellular hydrated reticular dermis allograft derived from donated human skin.
- DermACELL™ (LifeNet Health) is an allogeneic ADM processed with proprietary technologies MATRACELL® and PRESERVON®.
- DermaMatrix™ (Synthes) is a freeze-dried ADM derived from donated human skin tissue. DermaMatrix Acellular Dermis is processed by the Musculoskeletal Transplant Foundation.
- DermaPure™ (Tissue Regenex Wound Care) is a single-layer decellularized human dermal allograft for the treatment of acute and chronic wounds.
- Graftjacket® Regenerative Tissue Matrix (also called Graftjacket Skin Substitute; KCI) is an acellular regenerative tissue matrix that has been processed from human skin supplied from U.S. tissue banks. The allograft is minimally processed to remove the epidermal and dermal cells while preserving dermal structure. Graftjacket Xpress® is an injectable product.

FDA product codes: FTM, OXF.

Xenogenic Products

Cytal™ (previously called MatriStem®) Wound Matrix, Multilayer Wound Matrix, Pelvic Floor Matrix, MicroMatrix, and Burn Matrix (all manufactured by ACell) are composed of porcine-derived urinary bladder matrix.

Helicoll (Encol) is an acellular collagen matrix derived from bovine dermis. In 2004, it was cleared for marketing by the FDA through the 510(k) process for topical wound management that includes partial and full-thickness wounds, pressure ulcers, venous ulcers, chronic vascular ulcers, diabetic ulcers, trauma wounds (e.g., abrasions, lacerations, second-degree burns, skin tears), and surgical wounds including donor sites and grafts.

Keramatrix® (Keraplast Research) is an open-cell foam comprised of freeze-dried keratin that is derived from a cellular animal protein. In 2009, it was cleared for marketing by the FDA through the 510(k) process under the name of Keratec. The wound dressings are indicated in the management of the following types of dry, light, and moderately exudating partial and full-thickness wounds: pressure (stage I-IV) and venous stasis ulcers, ulcers caused by mixed vascular etiologies, diabetic ulcers, donor sites, and grafts.

Kerecis™ Omega3 Wound (Kerecis) is an ADM derived from fish skin. It has a high content of omega 3 fatty acids and is intended for use in burn wounds, chronic wounds, and other applications.

Permacol™ (Covidien) is xenogeneic and composed of cross-linked porcine dermal collagen. Cross-linking improves the tensile strength and long-term durability but decreases pliability.

PriMatrix™ (TEI Biosciences) is a xenogeneic ADM processed from fetal bovine dermis. It was cleared for marketing by the FDA through the 510(k) process for partial- and full-thickness wounds; diabetic, pressure, and venous stasis ulcers; surgical wounds; and tunneling, draining, and traumatic wounds. FDA product code: KGN.

SurgiMend® PRS (TEI Biosciences) is a xenogeneic ADM processed from fetal bovine dermis.

Strattice™ Reconstructive Tissue Matrix (LifeCell Corp.) is a xenogenic non-cross-linked porcine-derived ADM. There are pliable and firm versions, which are stored at room temperature and come fully hydrated.

Oasis™ Wound Matrix (Cook Biotech) is a collagen scaffold (extracellular matrix) derived from porcine small intestinal submucosa. In 2000, it was cleared for marketing by the FDA through the 510(k) process for the management of partial- and full-thickness wounds, including pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled undermined wounds, surgical wounds, trauma wounds, and draining wounds. FDA Product code: KGN.
Living Cell Therapy

Apligraf® (Organogenesis) is a bilayered living cell therapy composed of an epidermal layer of living human keratinocytes and a dermal layer of living human fibroblasts. Apligraf® is supplied as needed, in 1 size, with a shelf-life of 10 days. In 1998, it was approved by the FDA for use in conjunction with compression therapy for the treatment of noninfected, partial- and full-thickness skin ulcers due to venous insufficiency and in 2001 for full-thickness neuropathic diabetic lower-extremity ulcers nonresponsive to standard wound therapy. FDA product code: FTM.

Demagr aft® (Organogenesis) is composed of cryopreserved human-derived fibroblasts and collagen derived from newborn human foreskin and cultured on a bioabsorbable polyglactin mesh scaffold. Demagr aft has been approved by the FDA for repair of diabetic foot ulcers. FDA product code: PFC.

TheraSkin® (Soluble Systems) is a cryopreserved split-thickness human skin allograft composed of living fibroblasts and keratinocytes and an extracellular matrix in epidermal and dermal layers. TheraSkin® is derived from human skin allograft supplied by tissue banks compliant with the American Association of Tissue Banks and FDA guidelines. It is considered a minimally processed human cell, tissue, and cellular- and tissue based product by the FDA.

Epicel® (Genzyme Biosurgery) is an epithelial autograft composed of a patient's own keratinocytes cultured ex vivo and is FDA-approved under a humanitarian device exemption for the treatment of deep dermal or full-thickness burns comprising a total body surface area of 30% or more. It may be used in conjunction with split-thickness autografts or alone in patients for whom split-thickness autografts may not be an option due to the severity and extent of their burns. FDA product code: OCE.

OrCel™ (Forticell Bioscience; formerly Composite Cultured Skin) is an absorbable allogeneic bilayered cellular matrix, made of bovine collagen, in which human dermal cells have been cultured. It was approved by the FDA premarket approval for healing donor site wounds in burn victims and under a humanitarian device exemption (HDE) for use in patients with recessive dystrophic epidermolysis bullosa undergoing hand reconstruction surgery to close and heal wounds created by the surgery, including those at donor sites. FDA product code: ODS.

Biosynthetic Products

Biobrane®/Biobrane-L (Smith & Nephew) is a biosynthetic wound dressing constructed of a silicon film with a nylon fabric partially imbedded into the film. The fabric creates a complex 3-dimensional structure of trifilament thread, which chemically binds collagen. Blood/sera clot in the nylon matrix, adhering the dressing to the wound until epithelialization occurs. FDA product code: FRO.

Integra® Dermal Regeneration Template (also marketed as Omnigraft Dermal Regeneration Matrix; Integra LifeSciences) is a bovine, collagen/glycosaminoglycan dermal replacement covered by a silicone temporary epidermal substitute. It was approved by the FDA for use in the postexcisional treatment of life-threatening full-thickness or deep partial-thickness thermal injury where sufficient autograft is not available at the time of excision or not desirable because of the physiologic condition of the patient and for certain diabetic foot ulcers. Integra® Matrix Wound Dressing and Integra® Meshed Bilayer Wound Matrix are substantially equivalent skin substitutes and were cleared for marketing by the FDA through the 510(k) process for other indications. Integra® Bilayer Matrix Wound Dressing (Integra LifeSciences) is designed to be used in conjunction with negative pressure wound therapy. The meshed bilayer provides a flexible wound covering and allows drainage of wound exudate. FDA product code: MDD.

TransCyte™ (Advanced Tissue Sciences) consists of human dermal fibroblasts grown on nylon mesh, combined with a synthetic epidermal layer and was approved by the FDA in 1997. TransCyte is intended as a temporary covering over burns until autografting is possible. It can also be used as a temporary covering for some burn wounds that heal without autografting.
Synthetic Products

Suprathel® (PolyMedics Innovations) is a synthetic copolymer membrane fabricated from a tripolymer of polylactide, trimethylene carbonate, and ε-caprolactone. It is used to provide temporary coverage of superficial dermal burns and wounds. Suprathel® is covered with gauze and a dressing that is left in place until the wound has healed.

Rationale

Background

Skin and Soft Tissue Substitutes

Bioengineered skin and soft tissue substitutes may be either acellular or cellular. Acellular products (e.g., dermis with cellular material removed) contain a matrix or scaffold composed of materials such as collagen, hyaluronic acid, and fibronectin. Acellular dermal matrix (ADM) products can differ in a number of ways, including as species source (human, bovine, porcine), tissue source (e.g. dermis, pericardium, intestinal mucosa), additives (e.g. antibiotics, surfactants), hydration (wet, freeze-dried), and required preparation (multiple rinses, rehydration).

Cellular products contain living cells such as fibroblasts and keratinocytes within a matrix. The cells contained within the matrix may be autologous, allogeneic, or derived from other species (e.g., bovine, porcine). Skin substitutes may also be composed of dermal cells, epidermal cells, or a combination of dermal and epidermal cells, and may provide growth factors to stimulate healing. Bioengineered skin substitutes can be used as either temporary or permanent wound coverings.

Applications

There are a large number of potential applications for artificial skin and soft tissue products. One large category is nonhealing wounds, which potentially encompasses diabetic neuropathic ulcers, vascular insufficiency ulcers, and pressure ulcers. A substantial minority of such wounds do not heal adequately with standard wound care, leading to prolonged morbidity and increased risk of mortality. For example, nonhealing lower-extremity wounds represent an ongoing risk for infection, sepsis, limb amputation, and death. Bioengineered skin and soft tissue substitutes have the potential to improve rates of healing and reduce secondary complications.

Other situations in which bioengineered skin products might substitute for living skin grafts include certain postsurgical states (e.g., breast reconstruction) in which skin coverage is inadequate for the procedure performed, or for surgical wounds in patients with compromised ability to heal. Second- and third-degree burns are another indication in which artificial skin products may substitute for auto- or allografts. Certain primary dermatologic conditions that involve large areas of skin breakdown (e.g., bullous diseases) may also be conditions in which artificial skin products can be considered as substitutes for skin grafts. ADM products are also being evaluated in the repair of other soft tissues including rotator cuff repair, following oral and facial surgery, hemias, and other conditions.

Literature Review

The original review focused on the use of allogeneic bioengineered skin substitutes in breast reconstructive surgery and was expanded in 2011 to address additional indications.

Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life (QOL), and ability to function—including benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.
To assess whether the evidence is sufficient to draw conclusions about the net health outcome of technology, 2 domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The RCT is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

The following is a summary of key literature to date.

Breast Reconstruction

Clinical Context and Therapy Purpose

A variety of breast reconstruction techniques are used postmastectomy, including implant-based (immediate or delayed following use of a tissue expander) and those using autologous tissue flaps. Some of these techniques have been used with a cellular dermal matrix (ADM) to provide additional support or tissue coverage. The purpose of bioengineered soft tissue substitutes in patients who are undergoing breast reconstruction is to provide a treatment option that is an alternative to or an improvement on breast reconstruction without use of a biological or biosynthetic matrix.

The question addressed in this evidence review is: Do bio-engineered soft tissue substitutes in patients who are undergoing breast reconstruction improve the net health outcome?

The following PICO was used to select literature to inform this review.

Patients

The relevant population of interest is patients who are undergoing breast reconstruction, typically following mastectomy.

Interventions

The therapy being considered is bioengineered soft tissue substitutes as a biological matrix that is used to facilitate one-stage tissue expander reconstruction. As noted in the regulatory status section, the FDA has not cleared or approved any surgical mesh device (synthetic, animal collagen-derived, or human collagen-derived) for use in breast surgery.

Comparators

The following therapies are currently being used to make decisions about soft tissue substitutes or biological matrices: 2-stage tissue expander reconstruction without a biological matrix.

Outcomes

The general outcomes of interest are symptoms, morbid events, functional outcomes, QOL, and treatment-related morbidity. Specific outcomes are the time to permanent implant, pain during and after the procedure, and adverse events including seroma, infection, and necrosis rates, rates of capsular contracture, and malposition of implants. Short-term outcomes would be measured within 3 months with longer-term outcomes apparent by 2 years.

Study Selection Criteria

1. To assess efficacy outcomes, we sought comparative controlled prospective trials, with preference for RCTs.
2. In the absence of such trials, we sought comparative observational studies, with preference for prospective studies.
3. To assess longer-term outcomes and adverse effects, we sought single-arm studies that capture longer periods of follow-up and/or larger populations.
4. Within each category of study design, we prefer larger sample size studies and longer duration studies.
5. We excluded studies with duplicative or overlapping populations.
* Includes various RCT designs such as adaptive trials, pragmatic trials, and cluster trials.

Evidence Review
The literature on ADM for breast reconstruction consists primarily of retrospective, uncontrolled series and systematic reviews of these studies.

A 2013 study used data from the American College of Surgeon’s National Surgical Quality Improvement Program to compare ADM-assisted tissue expander breast reconstruction (n=1717) to submuscular tissue expander breast reconstruction (n=7442) after mastectomy. Complication rates did not differ significantly between the ADM-assisted (5.5%) and the submuscular tissue expander groups (5.3%; p=0.68). Rates of reconstruction-related complications, major complications, and 30-day reoperation did not differ significantly between cohorts.

Systematic Reviews
A meta-analysis by Lee and Mun (2016) included 23 studies (total N=6199 cases) on implant-based breast reconstruction that were published between February 2011 and December 2014. The analysis included an RCT and 3 prospective comparative cohort studies, the remainder were retrospective comparative cohort studies. Use of ADM did not affect the total complication rate (see Table 1). ADM significantly increased the risk of major infection, seroma, and flap necrosis, but reduced risks of capsular contracture and implant malposition. Use of ADM allowed for significantly greater intraoperative expansion (mean difference, 79.63; 95% confidence interval [CI], 41.99 to 117.26; p<0.001) and percentage of intraoperative filling (mean difference=13.30; 95% CI, 9.95 to 16.65; p<0.001), and reduced the frequency of injections to complete expansion (mean difference=-1.56; 95% CI, -2.77 to -0.35; p=0.01).

Table 1. Meta-Analysis of Breast Reconstruction Outcomes With and Without ADM

<table>
<thead>
<tr>
<th>Outcome Measure</th>
<th>Relative Risk</th>
<th>95% Confidence Interval</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection</td>
<td>1.42</td>
<td>1.02 to 1.99</td>
<td>0.04</td>
</tr>
<tr>
<td>Seroma</td>
<td>1.41</td>
<td>1.12 to 1.78</td>
<td>0.004</td>
</tr>
<tr>
<td>Mastectomy flap necrosis</td>
<td>1.44</td>
<td>1.11 to 1.87</td>
<td>0.006</td>
</tr>
<tr>
<td>Unplanned return to the operating room</td>
<td>1.09</td>
<td>0.63 to 1.90</td>
<td>NS</td>
</tr>
<tr>
<td>Implant loss</td>
<td>1.00</td>
<td>0.68 to 1.48</td>
<td>NS</td>
</tr>
<tr>
<td>Total complications</td>
<td>1.08</td>
<td>0.87 to 1.34</td>
<td>NS</td>
</tr>
<tr>
<td>Capsular contracture</td>
<td>0.26</td>
<td>0.15 to 0.47</td>
<td><0.001</td>
</tr>
<tr>
<td>Implant malposition</td>
<td>0.21</td>
<td>0.07 to 0.59</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Adapted from Lee and Mun (2016). ADM: acellular dermal matrix; NS: not significant.

AlloDerm Randomized Controlled Trials
McCarthy et al (2012) reported on a multicenter, blinded RCT of AlloDerm in 2-stage expander/implant reconstruction. Seventy patients were randomized to AlloDerm ADM-assisted tissue expander/implant reconstruction or to submuscular tissue expander/implant placement. The trial was adequately powered to detect clinically significant differences in immediate postoperative pain but underpowered to detect the secondary endpoint of pain during tissue expansion. There were no significant differences between the groups in the primary outcomes of immediate postoperative pain (54.6 AlloDerm vs. 42.8 controls on a 100-point visual analog scale) or pain during the expansion phase (17.0 AlloDerm vs. 4.6 controls) or in the secondary outcome of rate of tissue expansion (91 days AlloDerm vs. 108 days controls) and patient-reported physical well-being. There was no significant difference in adverse events, although the total number of adverse events was small.
Comparisons Between Products

AlloDerm Versus AlloMax

Hinchcliff et al (2017) conducted an RCT that compared AlloDerm with AlloMax (n=15 each) for implant-based breast reconstruction. Complications were assessed 7, 14, and 30 days postoperatively and biopsies of the ADMs were taken during implant exchange. Vessel density in the AlloMax biopsies was higher than in the AlloDerm biopsies. Complications were reported in 26.1% of AlloMax cases and 8.0% of AlloDerm cases; these complication rates did not differ statistically with the 30 patients in this trial.

AlloDerm Versus DermaMatrix

Mendenhall et al (2017) conducted an RCT that compared AlloDerm with DermaMatrix in 111 patients (173 breasts). There were no significant differences in overall rates of complications (AlloDerm, 15.4%; DermaMatrix, 18.3%; p=0.8) or implant loss (AlloDerm, 2.2%; DermaMatrix, 3.7%; p=0.5) between the 2 ADMs.

AlloDerm Versus FlexHD

A retrospective review by Liu et al (2014) compared complication rates following breast reconstruction with AlloDerm or FlexHD in 382 consecutive women (547 breasts). Eighty-one percent of the sample was immediate reconstruction: 165 used AlloDerm and 97 used FlexHD. Mean follow-up was 6.4 months. Compared with breast reconstruction without the use of AlloDerm or FlexHD, ADM had a higher rate of delayed healing (20.2% vs. 10.3%), although this finding might have been related to differences in fill volumes. In univariate analysis, there were no significant differences in complications (return to operating room, surgical site infection, seroma, hematoma, delayed healing, implant loss) between AlloDerm and FlexHD. In multivariate analysis, there were no significant differences between AlloDerm and FlexHD for the return to the operating room, surgical site infection, seroma, or delayed healing. Independent risk factors for implant loss included the use of FlexHD, single-stage reconstruction, and smoking.

AlloDerm Versus FlexHD Pliable and DermACELL

Chang and Liu (2017) reported on a prospective comparison of FlexHD Pliable (32 breasts), AlloDerm (22 breasts), and DermACELL (20 breasts) in breast reconstruction. The choice of ADM was based on different years when each ADM was available for use at the investigators’ institution; patient demographics were comparable between groups. The pieces of ADM used were all the same size (8 x 16 cm) to eliminate an effect of size on outcomes. The time to drain removal was longer with AlloDerm (26 days) than with FlexHD (20 days) or DermACELL (15 days; p=0.001). Complications were low (4 in the Flex Pliable group, 2 in the AlloDerm group, 1 in the DermACELL group), with no significant differences between groups. At the time of exchange for a permanent implant or free flap reconstruction, all grafts had completely incorporated into the mastectomy skin flaps. No patients developed complications requiring removal of the ADM.

Pittman et al (2017) reported a retrospective pilot study of the use of AlloDerm (50 breasts) and DermACELL (50 breasts). The choice of ADM was based on products available during different years and patient demographics were similar between the 2 groups. Patients in the DermACELL group had a significantly lower incidence of “red breast syndrome” (0% vs. 26%, p=0.001) and fewer days until drain removal (15.8 days vs. 20.6 days, p=0.017). There were no significant differences in the rates of other complications.

Strattice

Dikmans et al (2017) reported on early safety outcomes from an open-label multicenter RCT that compared porcine ADM-assisted 1-stage expansion with 2-stage implant-based breast reconstruction (see Table 2). One-stage breast reconstruction with porcine ADM was associated with a higher risk of surgical complications, reoperation, and with removal of implant, ADM, or both (see Table 3). The trial was stopped early due to safety concerns, but it cannot be determined from this study design whether the increase in complications was due to the use of the xenogenic ADM or to the comparison between 1-stage and 2-stage reconstruction.
Table 2. Summary of Key RCT Characteristics

<table>
<thead>
<tr>
<th>Author</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Active</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dikmans et al (2017)†</td>
<td>EU</td>
<td>8</td>
<td>2013-2015</td>
<td>Women intending to undergo skin-sparing mastectomy and immediate IBBR</td>
<td>59 patients (91 breasts) undergoing 1-stage IBBR with ADM</td>
<td>62 women (92 breasts) undergoing 2-stage IBBR</td>
</tr>
</tbody>
</table>

ADM: acellular dermal matrix; IBBR: implant-based breast reconstruction; RCT: randomized controlled trial.

Table 3. Summary of Key RCT Outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>Surgical Complications</th>
<th>Severe Adverse Events</th>
<th>Reoperation</th>
<th>Removal of Implant, ADM, or Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dikmans et al (2017)†</td>
<td>1-stage with ADM, n (%)</td>
<td>27 (46)</td>
<td>26 (29)</td>
<td>22 (37)</td>
</tr>
<tr>
<td></td>
<td>2-stage with ADM, n (%)</td>
<td>11 (18)</td>
<td>5 (5)</td>
<td>9 (15)</td>
</tr>
<tr>
<td>OR (95% CI)</td>
<td>3.81 (2.67 to 5.43)</td>
<td>3.38 (2.10 to 5.45)</td>
<td>8.80 (8.24 to 9.40)</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

ADM: acellular dermal matrix; CI: confidence interval; OR: odds ratio; RCT: randomized controlled trial.

Section Summary: Breast Reconstruction

Results of a systematic review found no difference in overall complication rates between ADM allograft and standard procedures for breast reconstruction. Although reconstructions with ADM have been reported to have higher seroma, infection, and necrosis rates than reconstructions without ADM, rates of capsular contracture and malposition of implants may be reduced. Thus, in cases where there is limited tissue coverage, the available studies may be considered sufficient to permit informed decision-making about risks and benefits of using allogeneic ADM for breast reconstruction.

Tendon Repair

Clinical Context and Therapy Purpose

The purpose of bio-engineered soft tissue substitutes in patients who are undergoing tendon repair is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Do bio-engineered soft tissue substitutes in patients undergoing tendon repair improve the net health outcome?

The following PICO was used to select literature to inform this review.

Patients

The relevant population(s) of interest is patients undergoing tendon repair.

Interventions

The therapy being considered is bioengineered soft-tissue substitutes.

Comparators

The following therapies are currently being used to make decisions about tendon repair: tendon repair without bioengineered soft-tissue substitutes.

Outcomes

The general outcomes of interest are symptoms, morbid events, functional outcomes, QOL, and treatment-related morbidity. Short-term outcomes would be measured within 3 months with longer-term outcomes apparent by 2 years.
Study Selection Criteria
1. To assess efficacy outcomes, we sought comparative controlled prospective trials, with preference for RCTs.
2. In the absence of such trials, we sought comparative observational studies, with preference for prospective studies.
3. To assess longer-term outcomes and adverse effects, we sought single-arm studies that capture longer periods of follow-up and/or larger populations.
4. Within each category of study design, prefer larger sample size studies and longer duration studies.
5. We excluded studies with duplicative or overlapping populations.

* Includes various RCT designs such as adaptive trials, pragmatic trials, and cluster trials.

Evidence Review
Graftjacket
Barber et al (2012) reported an industry-sponsored multicenter RCT of augmentation with Graftjacket human ADM for arthroscopic repair of large (>3 cm) rotator cuff tears involving 2 tendons. Twenty-two patients were randomized to Graftjacket augmentation and 20 patients to no augmentation. At a mean follow-up of 24 months (range, 12-38 months), the American Shoulder and Elbow Surgeons score improved from 48.5 to 98.9 in the Graftjacket group and from 46.0 to 94.8 in the control group (p=0.035). The Constant score improved from 41 to 91.9 in the Graftjacket group and from 45.8 to 85.3 in the control group (p=0.008). The University of California, Los Angeles score did not differ significantly between groups.

Gadolinium-enhanced MRI scans showed intact cuffs in 85% of repairs in the Graftjacket group and 40% of repairs in the control group. However, no correlation was found between MRI findings and clinical outcomes. Rotator cuff retears occurred in 3 (14%) patients in the Graftjacket group and 9 (45%) patients in the control group.

Section Summary: Tendon Repair
One small RCT was identified that found improved outcomes with Graftjacket ADM allograft for rotator cuff repair. Although results of this trial were promising, additional study with a larger number of patients is needed to corroborate these findings and determine the effects of this technology with greater certainty.

Surgical Repair of Hernias or Parastomal Reinforcement
Clinical Context and Therapy Purpose
The purpose of bio-engineered soft tissue substitutes in patients who are undergoing surgical repair of hernias or require parastomal reinforcement is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Do bioengineered soft tissue substitutes in patients undergoing surgical repair of hernias or require parastomal reinforcement improve the net health outcome?

The following PICO was used to select literature to inform this review.

Patients
The relevant population(s) of interest is undergoing surgical repair of hernias or require parastomal reinforcement.

Interventions
The therapy being considered is bioengineered matrix support.

Comparators
The following therapies are currently being used for surgical repair of hernias or parastomal reinforcement: synthetic mesh.
Outcomes
The general outcomes of interest are symptoms, morbid events, functional outcomes, QOL, and treatment-related morbidity. Specific outcomes are surgical site occurrence of postoperative infection, seroma/hematoma, pain, bulging, dehiscence, fistula, or mechanical failure. Short-term outcomes would be measured within 3 months with longer-term outcomes apparent by 2 years.

Study Selection Criteria
1. To assess efficacy outcomes, we sought comparative controlled prospective trials, with preference for RCTs*.
2. In the absence of such trials, we sought comparative observational studies, with preference for prospective studies.
3. To assess longer-term outcomes and adverse effects, we sought single-arm studies that capture longer periods of follow-up and/or larger populations.
4. Within each category of study design, prefer larger sample size studies and longer duration studies.
5. We excluded studies with duplicative or overlapping populations.

* Includes various RCT designs such as adaptive trials, pragmatic trials, and cluster trials.

A 2013 systematic review evaluated the clinical effectiveness of acellular collagen-based scaffolds for the repair of incisional hernias. The bioprosthetic materials could be harvested from bovine pericardium, human cadaveric dermis, porcine small intestine mucosa, porcine dermal collagen, or bovine demal collagen. Products included in the search were Surgisis, Tutomesh, Veritas, AlloDerm, FlexHD, AlloMax, CollaMend, Pemacol, Strattice, FortaGen, ACell, DermaMatrix, XenMatrix, and SurgiMend. Sixty publications with 1212 repairs were identified and included in the review, although meta-analysis could not be performed. There were 4, level III studies (2 AlloDerm, 2 Pemacol); the remainder was level IV or V. The largest number of publications were on AlloDerm (n=27) and Pemacol (n=18). No publications on incisional hernia repair were identified for AlloMax, FortaGen, DermaMatrix, or ACell. The overall incidence of a surgical site occurrence (e.g., postoperative infection, seroma/hematoma, pain, bulging, dehiscence, fistula, mechanical failure) was 82.6% for porcine small intestine mucosa, 50.7% for xenogenic dermis, 48.3% for human dermis, and 6.3% for xenogenic pericardium. No comparative data were identified that could establish superiority to permanent synthetic meshes.

AlloDerm as an Overlay
Espinosa-de-los-Monteros et al (2007) retrospectively reviewed 39 abdominal wall reconstructions with AlloDerm performed in 37 patients and compared them with 39 randomly selected cases. They reported a significant decrease in recurrence rates when human cadaveric acellular dermis was added as an overlay to primary closure plus rectus muscle advancement and imbrication in patients with medium-sized hernias. However, no differences were observed when adding human cadaveric acellular dermis as an overlay to patients with large-size hernias treated with underlay mesh.

Comparisons Between Products
AlloDerm Versus Surgisis Gold
Gupta et al (2006) compared the efficacy and complications associated with use of AlloDerm and Surgisis bioactive mesh in 74 patients who underwent ventral hernia repair. The first 41 procedures were performed using Surgisis Gold 8-ply mesh formed from porcine small intestine submucosa, and the remaining 33 patients had ventral hernia repair with AlloDerm. Patients were seen 7 to 10 days after discharge from the hospital and at 6 weeks. Any signs of wound infection, diastasis, hemia recurrence, changes in bowel habits, and seroma formation were evaluated. The use of the AlloDerm mesh resulted in 8 (24%) hemia recurrences. Fifteen (45%) of the AlloDerm patients developed a diastasis or bulging at the repair site. Seroma formation was only a problem in 2 patients.
AlloDerm Versus FlexHD
A 2013 study compared AlloDerm with FlexHD for complicated hernia surgery.18 From 2005 to 2007, AlloDerm was used to repair large (>200 cm²) symptomatic complicated ventral hernias that resulted from trauma or emergency surgery (n=55). From 2008 to 2010, FlexHD was used to repair large, complicated ventral hernias in patients meeting the same criteria (n=40). The 2 groups were comparable at baseline. At 1 year follow-up, all AlloDerm patients were diagnosed with hernia recurrence (abdominal laxity, functional recurrence, true recurrence) requiring a second repair. Eleven (31%) patients in the FlexHD group required a second repair. This comparative study is limited by the use of nonconcurrent comparisons, which is prone to selection bias and does not control for temporal trends in outcomes.

FlexHD Versus Strattice
Roth et al (2017) reported on a prospective study assessing clinical and QOL outcomes following complex hernia repair with a human (FlexHD) or porcine (Strattice) ADM.19 The study was funded by the Musculoskeletal Transplant Foundation, which prepares and supplies FlexHD. Patients were enrolled if they had a hernia at least 6 cm in the transverse dimension, active or prior infection of the abdominal wall, and/or enterocutaneous fistula requiring mesh removal. Eighteen (51%) of the 35 patients had undergone a previous hernia repair. After abdominal wall repair with the ADM, 20 (57%) patients had a surgical site occurrence, and nearly one-third had hospital readmission. The type of biologic material did not impact hernia outcomes. There was no comparison with synthetic mesh in this study, limiting interpretation.

Strattice Versus Synthetic Mesh
Bellows et al (2014) reported early results of an industry-sponsored multicenter RCT that compared Strattice (non-cross-linked porcine ADM, n=84) with a standard synthetic mesh (n=88) for the repair of inguinal hernias.20 The trial was designed by the surgeons and was patient- and assessor-blinded to reduce risk of bias. Blinding continued through 2 years of follow-up. The primary outcome was resumption of activities of daily living at 1 year. Secondary outcomes included complications, recurrences, or chronic pain (i.e., pain that did not disappear by 3 months post surgery). At 3-month follow-up, there were no significant differences in either the occurrence or type of wound events (relative risk, 0.98; 95% CI, 0.52 to 1.86). Pain was reduced from 1 to 3 days postoperative in the group treated with Strattice, but at 3-month follow-up pain scores did not differ significantly between groups.

Strattice Versus No Reinforcement
Also in 2014, the Parastomal Reinforcement With Strattice (PRISM) Study Group reported a multicenter, double-blinded, randomized trial of Strattice for parastomal reinforcement in patients undergoing surgery for permanent abdominal wall ostomies.21 Patients were randomized to standard stoma construction with no reinforcement (n=58) or stoma construction with Strattice as parastomal reinforcement (n=55). At 24-month follow-up (n=75), the incidence of parastomal hernias was similar for the 2 groups (13.2% of controls, 12.2% of study group).

Section Summary: Surgical Repair of Hemias or Parastomal Reinforcement
Current evidence does not support a benefit of ADMs in hernia repair or prevention of parastomal hernia. Additional RCTs are needed to compare biologic mesh with synthetic mesh and to determine if there is a patient population that would benefit from these products.

Diabetic Lower-Extremity Ulcers
Clinical Context and Therapy Purpose
The purpose of bio-engineered soft tissue substitutes in patients who have diabetic lower extremity ulcers is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Do bio-engineered soft tissue substitutes in patients with diabetic lower extremity ulcers improve the net health outcome?
The following PICO was used to select literature to inform this review.

Patients
The relevant population(s) of interest is patients with diabetic lower extremity ulcers.

Interventions
The therapy being considered is bioengineered skin substitutes.

Comparators
The following therapies are currently being used: standard wound care which involves regular debridement and moist wound covering.

Outcomes
The general outcomes of interest are symptoms, change in disease status, morbid events, and QOL.

The primary endpoints of interest for trials of wound closure are as follows, consistent with guidance from the FDA for industry in developing products for treatment of chronic cutaneous ulcer and burn wounds:
1. Incidence of complete wound closure.
2. Time to complete wound closure (reflecting accelerated wound closure).
3. Incidence of complete wound closure following surgical wound closure.
4. Pain control.

Time to wound closure can be measured at 6 months with longer-term outcomes apparent by 1 year. More complex wounds may require more than 6 months to heal.

Study Selection Criteria
1. To assess efficacy outcomes, we sought comparative controlled prospective trials, with preference for RCTs*.
2. In the absence of such trials, we sought comparative observational studies, with preference for prospective studies.
3. To assess longer-term outcomes and adverse effects, we sought single-arm studies that capture longer periods of follow-up and/or larger populations.
4. Within each category of study design, prefer larger sample size studies and longer duration studies.
5. We excluded studies with duplicative or overlapping populations.

* Includes various RCT designs such as adaptive trials, pragmatic trials, and cluster trials.

Evidence Review

Systematic Reviews
A 2016 Cochrane review evaluated skin substitutes for the treatment of diabetic foot ulcers. Seventeen trials (total N=1655 participants) were included in the meta-analysis. Most trials identified were industry-sponsored, and an asymmetric funnel plot indicated publication bias. Pooled results of published trials found that skin substitutes increased the likelihood of achieving complete ulcer closure compared with standard of care (SOC) alone (relative risk, 1.55; 95% CI, 1.30 to 1.85). Use of skin substitutes also led to a statistically significant reduction in amputations (relative risk, 0.43; 95% CI, 0.23 to 0.81), although the absolute risk difference was small. Analysis by individual products found a statistically significant benefit on ulcer closure for Apligraf, Epifix, and Hyalograft-3D. The products that did not show a statistically significant benefit for ulcer closure were Dermagraft, Graftjacket, Kaloderm, and OrCel. Individual RCTs are described next.

Martinson and Martinson (2016) conducted an industry-sponsored analysis of Medicare claims data (13193 treatment episodes) to compare efficacy and cost of skin substitutes for the
management of diabetic foot ulcers. Included in the analysis were treatment episodes with Apligraf (37%), Dermagraft (42%), Oasis (19%), and Cytal (MatriStem, 2%). The mean number of applications was 3.24 for Apligraf, 4.48 for Oasis, 5.53 for Cytal, and 5.96 for Dermagraft. All comparisons were statistically significant. Healing at 90 days was modestly but statistically higher for Oasis (63%) and Cytal (62%) than for Apligraf (58%) or Dermagraft (58%). Amputation rates were similar after treatment with the 4 products, ranging from 1.3% for Oasis to 2.1% for Cytal.

Guo et al (2017) reported a systematic review of ADM for the treatment of diabetic foot ulcers. Most data were from an RCT of Integra Dermal Regeneration Template, which is a bilayer product with the outer layer composed of a thin silicone film and not a pure ADM.

Apligraf, Dermagraft, AlloPatch, Integra Dermal Regeneration Template, or Integra Flowable Wound Matrix

Apligraf

Veves et al (2001) reported on a randomized prospective trial on the effectiveness of Apligraf (previously called Graftskin), a living skin equivalent, in treating noninfected nonischemic chronic plantar diabetic foot ulcers. The trial involved 24 centers in the United States; 208 patients were randomized to ulcer treatment with Apligraf (112 patients) or saline-moistened gauze (96 patients, control group). Standard state-of-the-art adjunctive therapy, including extensive surgical débridement and adequate foot off-loading, was provided in both groups. Apligraf was applied at the beginning of the study and weekly thereafter for a maximum of 4 weeks (maximum of 5 applications) or earlier if complete healing occurred. At the 12-week follow-up visit, 63 (56%) Apligraf-treated patients achieved complete wound healing compared with 36 (38%) in the control group (p=0.004). The Kaplan-Meier method median time to complete closure was 65 days for Apligraf, significantly lower than the 90 days observed in the control group (p=0.003). The rates of adverse reactions were similar between groups, except osteomyelitis and lower-limb amputations, both of which were less frequent in the Apligraf group. Trialists concluded that application of Apligraf for a maximum of 4 weeks resulted in higher healing rates than state-of-the-art treatment and was not associated with any significant adverse events. This trial was reviewed in a 2001 TEC Assessment, which concluded that Apligraf, in conjunction with good local wound care, met the TEC criteria for the treatment of diabetic ulcers that fail to respond to conservative management.

Steinberg et al (2010) reported on a study of 72 subjects from Europe and Australia that assessed the safety and efficacy of Apligraf in the treatment of noninfected diabetic foot ulcers. Study design and patient population were similar to the 208-subject U.S. study (previously described), which led to FDA approval of Apligraf for the treatment of diabetic foot ulcers. For these studies, subjects with noninfected neuropathic diabetic foot ulcers present for at least 2 weeks were enrolled in prospective, multicenter, open-label RCTs that compared Apligraf use plus standard therapy (sharp débridement, standard wound care, off-loading) with standard therapy alone. Pooling of data was performed because of the similarity and consistency of the 2 studies. Efficacy and safety results were consistent across studies independent of mean ulcer duration, which was significantly longer in the European study (21 months vs. 10 months in the U.S. study). Reported adverse events by 12 weeks were comparable across treatment groups in the 2 studies. Efficacy measures demonstrated superiority of Apligraf treatment over control-treated groups in both studies. Combining the data from both studies, 55.2% (80/145) of Apligraf subjects had complete wound closure by 12 weeks, compared with 34.3% (46/134) of control subjects (p<0.001), and Apligraf subjects had a significantly shorter time to complete wound closure (p<0.001). The authors concluded that both the EU and U.S. studies exhibited superior efficacy and comparable safety for subjects treated with Apligraf compared with control subjects and that the studies provided evidence of the benefit of Apligraf in treating diabetic foot ulcer.

Kirsner et al (2010) analyzed 2517 patients with diabetic neuropathic foot ulcers treated between 2001 and 2004. This retrospective analysis used a wound care database; the patients received advanced biologic therapy, specifically, Apligraf (446 patients), Regranex, or Procuren. The analysis found that advanced biologic therapy was used, on average, within 28 days from the first wound clinic visit and was associated with a median time to healing of 100 days. Wounds
treated with engineered skin (Apligraf) as the first advanced biologic therapy were 31% more likely to heal than wounds first treated with topical recombinant growth factor \((p<0.001) \) and 40% more likely to heal than those first treated with platelet releasate \((p=0.01) \). Wound size, wound grade, duration of wound, and time to initiation of advanced biologic therapy affected the time to healing.

Demagraft

A 2003 pivotal multicenter FDA-regulated trial randomized 314 patients with chronic diabetic ulcers to Demagraft (human-derived fibroblasts cultured on mesh) or control. Over the 12-week study, patients received up to 8 applications of Demagraft. All patients received pressure-reducing footwear and were encouraged to stay off their study foot as much as possible. At 12 weeks, the median percent wound closure for the Demagraft group was 91% compared with 78% for the control group. Ulcers treated with Demagraft closed significantly faster than ulcers treated with conventional therapy. No serious adverse events were attributed to Demagraft. Ulcer infections developed in 10.4% of the Demagraft patients compared with 17.9% of the control patients. Together, there was a lower rate of infection, cellulitis, and osteomyelitis in the Demagraft-treated group (19% vs. 32.5%). A 2015 retrospective analysis of the trial data found a significant reduction in amputation/bone resection rates with Demagraft (5.5% vs. 12.6%, \(p=0.031 \)). Of the 28 cases of amputation/bone resection, 27 were preceded by ulcer-related infection.

AlloPatch

AlloPatch Pliable human reticular acellular dermis was compared with SOC in an industry-sponsored multicenter trial by Zelen et al (2017, 2018). The initial trial with 20 patients per group was extended to determine the percent healing at 6 weeks with 40 patients per group. Healing was evaluated by the site investigator and confirmed by an independent panel. At 6 weeks, 68% (27/40) of wounds treated using AlloPatch had healed compared with 15% (6/40) in the SOC-alone group \((p<0.001) \). At 12 weeks, 80% (32/40) of patients in the AlloPatch group had healed compared to 30% (12/40) in the control group. Mean time to heal within 12 weeks was 38 days (95% CI: 29-47 days) for the HR-ADM group and 72 days (95% CI: 66-78 days) for the SOC group \((p < 0.001) \).

Integra Omnigraft Dermal Regeneration Template or Integra Flowable Wound Matrix

Integra Dermal Regeneration Template is a biosynthetic skin substitute that is FDA-approved for life-threatening thermal injury. The FOUNDER (Foot Ulcer New Dermal Replacement) multicenter study (32 sites) assessed Integra Dermal Regeneration Template (marketed as Omnigraft) for chronic nonhealing diabetic foot ulcers under an FDA-regulated investigational device exemption. A total of 307 patients with at least 1 chronic diabetic foot ulcer were randomized to treatment with the Integra Template or a control condition (sodium chloride gel 0.9%). Treatment was given for 16 weeks or until wound closure. There was a modest increase in wound closure with the Integra Template (51% vs. 32%, \(p=0.001 \)) and a shorter median time to closure (43 days vs. 78 days, \(p=0.001 \)). There was a strong correlation between investigator-assessed and computerized planimetry assessment of wound healing \((r=0.97) \). Kaplan-Meier analysis showed the greatest difference between groups in wound closure up to 10 weeks, with diminishing differences after 10 weeks. Trial strengths included adequate power to detect an increase in wound healing of 18% which was considered to be clinically significant, secondary outcomes of wound closure and time to wound closure by computerized planimetry, and intention-to-treat (ITT) analysis.

Integra Flowable Wound Matrix is composed of a porous matrix of cross-linked bovine tendon collagen and glycosaminoglycan. It is supplied as a granular product that is mixed with saline. Campitiello et al (2017) published an RCT that compared the flowable matrix with wet dressing in 46 patients who had Wagner grade 3 diabetic foot ulcers. The ulcers had developed over 39 weeks. Complete healing at 6 weeks was achieved in significantly more patients in the Integra Flowable Wound Matrix group than in the control group, while the risk of rehospitalization and major amputation was reduced with Integra Flowable Wound Matrix (see Table 4).
Table 4. Probability of Wound Healing With IFWM Versus SOC

<table>
<thead>
<tr>
<th>Study</th>
<th>Complete Wound Healing</th>
<th>Rehospitalization</th>
<th>Major Amputation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campitiello et al (2017)</td>
<td>20 (86.95)</td>
<td>2 (6.69)</td>
<td>1 (4.34)</td>
</tr>
<tr>
<td>IFWM, n (%)</td>
<td>20 (86.95)</td>
<td>2 (6.69)</td>
<td>1 (4.34)</td>
</tr>
<tr>
<td>SOC, n (%)</td>
<td>12 (52.17)</td>
<td>10 (43.47)</td>
<td>7 (30.43)</td>
</tr>
<tr>
<td>RR (95% CI)</td>
<td>1.67 (1.09 to 2.54)</td>
<td>0.10 (0.01 to 0.72)</td>
<td>0.16 (0.02 to 1.17)</td>
</tr>
<tr>
<td>p</td>
<td>0.010</td>
<td>0.001</td>
<td>0.028</td>
</tr>
</tbody>
</table>

CI: confidence interval; IFWM: Integra Flowable Wound Matrix; RR: relative risk; SOC: standard of care.

Section Summary: Apligraf, Demagraft, AlloPatch, or Integra for Diabetic Lower-Extremity Ulcers

RCTs have demonstrated the efficacy of Apligraf, Demagraft, AlloPatch, Integra Dermal Regeneration Template, and Integra Flowable Wound Matrix over SOC for the treatment of diabetic lower-extremity ulcers.

Bioengineered Skin Substitutes Other Than Apligraf, Demagraft, AlloPatch, or Integra

Graftjacket Regenerative Tissue Matrix

Brigido et al (2004) reported a small (N=40) randomized pilot study comparing Graftjacket with conventional treatment for chronic nonhealing diabetic foot ulcers.35 Control patients received conventional therapy with débridement, wound gel with gauze dressing, and off-loading. Graftjacket patients received surgical application of the scaffold using skin staples or sutures and moistened compressive dressing. A second graft application was necessary after the initial application for all patients in the Graftjacket group. Preliminary 1-month results showed that, after a single treatment, ulcers treated with Graftjacket healed at a faster rate than conventional treatment. There were significantly greater decreases in wound length (51% vs. 15%), width (50% vs. 23%), area (73% vs. 34%), and depth (89% vs. 25%), respectively. With follow-up to 4 weeks, no data were reported on the proportion with complete closure or the mean time to heal. All grafts were incorporated into the host tissue.

Reyzelman et al (2009) reported an industry-sponsored multicenter randomized study that compared a single application of Graftjacket with SOC in 86 patients with diabetic foot ulcers.36 Eight patients, 6 in the study group and 2 in the control group, did not complete the trial. At 12 weeks, complete healing was observed in 69.6% of the Graftjacket group and 46.2% of controls. After adjusting for ulcer size at presentation, a statistically significant difference in nonhealing rate was calculated, with odds of healing 2.0 times higher in the study group. Mean healing time was 5.7 weeks for the Graftjacket group versus 6.8 weeks for the control group. The authors did not report whether this difference was statistically significant. Median time to healing was 4.5 weeks for Graftjacket (range, 1-12 weeks) and 7.0 weeks for control (range, 2-12 weeks). Kaplan-Meier method survival analysis for time to complete healing at 12 weeks showed a significantly lower nonhealing rate for the study group (30.4%) than for the control group (53.9%). The authors commented that a single application of Graftjacket, as used in this study, was often sufficient for complete healing. Conclusions drawn from this study are limited by the small study population and differences in ulcer size at baseline. Questions also remain whether the difference in mean time to healing is statistically or clinically significant.

Reyzelman and Bazarov (2015)37 reported an industry-sponsored meta-analysis of Graftjacket for diabetic foot ulcers that included the 2 studies described above and a third RCT by Brigido (2006)38 with 28 patients (total N=154 patients). The time to heal was estimated for the Brigido (2004) study, based on the average wound reduction per week. The estimated difference in time to heal was considerably larger for Brigido’s (2004) study (-4.30 weeks) than for the other 2 studies that measured the difference in time to heal (-1.58 weeks and -1.10 weeks). Analysis of the proportion of wounds that healed included Brigido (2006) and Reyzelman et al (2009). The odds ratio in the smaller study by Brigido (2006) was considerably larger, with a lack of precision in the estimate (odds ratio, 15.0; 95% CI, 2.26 to 99.64), and the combined odds (3.75; 95% CI, 1.72 to 8.19) was not significant when analyzed using a random-effects model. Potential sources of bias, noted by Reyzelman and Bazarov (2015), included publication and reporting biases, study selection biases, incomplete data selection, post hoc manipulation of
data, and subjective choice of analytic methods. Overall, results of these studies do not provide convincing evidence that Graftjacket is more effective than SOC for healing diabetic foot ulcers.

DermACELL Versus Graftjacket Regenerative Tissue Matrix or SOC

DermACELL and Graftjacket are both composed of human ADM. Walters et al. (2016) reported on a multicenter randomized comparison of DermACELL, Graftjacket, or SOC (2:1:2 ratio) in 168 patients with diabetic foot ulcers.39 The study was sponsored by LifeNet Health, a nonprofit organ procurement association and processor for DermACELL. At 16 weeks, the proportion of completely healed ulcers was 67.9% for DermACELL, 47.8% for Graftjacket, and 48.1% for SOC. The 20% difference in completely healed ulcers was statistically significant for DermACELL versus SOC (p = 0.039). The mean time to complete wound closure did not differ significantly for DermACELL (8.6 weeks), Graftjacket (8.6 weeks), and SOC (8.7 weeks).

A second report from this study was published in 2017.40 This analysis compared DermACELL with SOC and did not include the Graftjacket arm. The authors reported that either 1 or 2 applications of DermACELL led to a greater proportion of wounds healed compared with SOC in per-protocol analysis (see Table 5), but there was no significant difference between DermACELL (1 or 2 applications) and SOC when analyzed by ITT. For the group of patients who received only a single application, the percentage of patients who achieved complete wound healing was significantly higher than SOC at 16 and 24 weeks, but not at 12 weeks. Although reported as ITT analysis, results were analyzed only for the group who received a single application of DermACELL. This would not typically be considered ITT unless the number of DermACELL applications was prespecified.

TheraSkin Versus Dermagraft

Sanders et al. (2014) reported on a small (N=23) industry-funded randomized comparison of TheraSkin (cryopreserved human skin allograft with living fibroblasts and keratinocytes) and Dermagraft for diabetic foot ulcers.41 Wound size at baseline ranged from 0.5 to 18.02 cm²; the average wound size was about 5 cm² and was similar for the 2 groups (p = 0.51). Grafts were applied according to manufacturers’ instructions over the first 12 weeks of the study until healing, with an average of 4.4 TheraSkin grafts (every 2 weeks) compared with 8.9 Dermagraft applications (every week). At week 12, complete wound healing was observed in 63.6% of ulcers treated with TheraSkin and 33.3% of ulcers treated with Dermagraft (p < 0.049). At 20 weeks, complete wound healing was observed in 90.9% of the TheraSkin-treated ulcers compared with 66.7% of the Dermagraft group (p = 0.428).

TheraSkin Versus Apligraf

DiDomenico et al. (2011) compared TheraSkin with Apligraf for the treatment of diabetic foot ulcers in a small (N=29) RCT.42 The risk of bias in this study is uncertain because reporting did not include a description of power analysis, statistical analysis, method of randomization, or blinding. The percentage of wounds closed at 12 weeks was 41.3% in the Apligraf group and 66.7% in the...
TheraSkin group. Results at 20 weeks were not substantially changed from those at 12 weeks, with 47.1% of wounds closed in the Apligraf group and 66.7% closed in the TheraSkin group. The percentage healed in the Apligraf group was lower than expected based on prior studies. The average number of grafts applied was similar for both groups (1.53 for Apligraf, 1.38 for TheraSkin). The low number of dressing changes may have influenced results, with little change in the percentage of wounds closed between 12 and 20 weeks. An adequately powered trial with blinded evaluation of wound healing and a standard treatment regimen would permit greater certainty on the efficacy of this product.

Cytal (MatriStem) Versus Dermagraft

Frykberg et al (2017) reported a prespecified interim analysis of an industry-funded multicenter noninferiority trial of Cytal (a porcine urinary bladder-derived extracellular matrix) versus Dermagraft in 56 patients with diabetic foot ulcers.43 The mean duration of ulcers before treatment was 263 days (range, 30-1095 days). The primary outcome was the percent wound closure with up to 8 weeks of treatment using blinded evaluation of photographs. ITT analysis found complete wound closure in 5 (18.5%) wounds treated with Cytal compared with 2 (6.9%) wounds treated with Dermagraft (p=NS). QOL, measured by the Diabetic Foot Ulcer Scale, improved from 181.56 to 151.11 in the Cytal group and from 184.46 to 195.73 in the Dermagraft group (p=0.074). It should be noted that this scale is a subjective measure and patients were not blinded to treatment. Power analysis indicated that 92 patients would be required; further recruitment is ongoing for completion of the study.

PriMatrix

Kavros et al (2014) reported a prospective multicenter study of PriMatrix (a xenograft fetal bovine dermal collagen matrix) for the treatment of chronic diabetic foot ulcers in 55 patients.44 Average duration of ulcers before treatment was 286 days, and average wound area was 4.34 cm². Of the 46 patients who completed the study, 76% healed by 12 weeks with an average of 2 applications of PriMatrix. For the ITT population, 64% of wounds healed by 12 weeks.

Karr (2011) published a retrospective comparison of PriMatrix and Apligraf in 40 diabetic foot ulcers.45 The first 20 diabetic foot ulcers matching the inclusion and exclusion criteria for each graft were compared. The criteria were: diabetic foot ulcers of 4 weeks in duration; ulcer of at least 1 cm² in diameter and to the depth of subcutaneous tissue; healthy tissue at the ulcer; adequate arterial perfusion to heal; and ability to off-load the diabetic ulcer. The time to complete healing for PriMatrix was 38 days with 1.5 applications compared with 87 days with 2 applications for Apligraf. Although promising, additional study with a larger number of subjects is needed to compare the efficacy of PriMatrix with current SOC or advanced wound therapies.

Oasis Wound Matrix Versus Regranex Gel

Niezgoda et al (2005) compared healing rates at 12 weeks for full-thickness diabetic foot ulcers treated with OASIS Wound Matrix (a porcine acellular wound care product) to Regranex Gel.46 This industry-sponsored, multicenter RCT was conducted at 9 outpatient wound care clinics and involved 73 patients with at least 1 diabetic foot ulcer. Patients were randomized to receive either Oasis Wound Matrix (n=37) or Regranex Gel (n=36) and secondary dressing. Wounds were cleaned and débrided, if needed, at a weekly visit. The maximum treatment period for each patient was 12 weeks. After 12 weeks, 18 (49%) Oasis-treated patients had complete wound closure compared with 10 (28%) Regranex-treated patients. Oasis treatment met the noninferiority margin but did not demonstrate that healing in the Oasis group was statistically superior (p=0.055). Post hoc subgroup analysis showed no significant difference in incidence of healing in patients with type 1 diabetes (33% vs. 25%) but showed a significant improvement in patients with type 2 diabetes (63% vs. 29%). There was also increased healing of plantar ulcers in the Oasis group (52% vs. 14%). These post hoc findings are considered hypothesis-generating. Additional study with a larger number of subjects is needed to compare the effect of Oasis treatment to current SOC.
Autologous Grafting on HYAFF Scaffolds
Uccioli et al (2011) reported a multicenter RCT of cultured expanded fibroblasts and keratinocytes grown on an HYAFF scaffold (benzyl ester of hyaluronic acid) compared with paraffin gauze for difficult diabetic foot ulcers. A total of 180 patients were randomized. At 12 weeks, complete ulcer healing was similar for the 2 groups (24% treated vs. 21% controls). At 20 weeks, complete ulcer healing was achieved in a similar proportion of the treatment group (50%) and the control group (43%, log-rank test = 0.344). Subgroup analysis, adjusted for baseline factors and possibly post-hoc, found a statistically significant benefit of treatment on dorsal ulcers but not plantar ulcers.

Section Summary: Bioengineered Skin Substitutes Other Than Apligraf, Dermagraft, AlloPatch, or Integra for Diabetic Lower-Extremity Ulcers
Results from a multicenter RCT showed some benefit of DermACELL that was primarily for the subgroup of patients who only required a single application of the ADM. Studies are needed to further define the population who might benefit from this treatment. Additional study with a larger number of subjects is needed to evaluate the effect of Graftjacket, TheraSkin, DermACELL, Cytal, PriMatrix, and Oasis Wound Matrix, compared with current SOC or other advanced wound therapies.

Lower-Extremity Ulcers due to Venous Insufficiency
Clinical Context and Therapy Purpose
The purpose of bio-engineered soft tissue substitutes in patients who have lower extremity ulcers due to venous insufficiency is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Do bio-engineered soft tissue substitutes in patients with venous ulcers improve the net health outcome?

The following PICO was used to select literature to inform this review.

Patients
The relevant population(s) of interest is patients who have lower extremity ulcers due to venous insufficiency.

Interventions
The therapy being considered is bioengineered skin substitutes.

Comparators
The following therapies are currently being used: SOC which includes debridement of necrotic tissue and compression.

A Cochrane review by O’Meara et al (2012) that evaluated compression for venous leg ulcers included 48 RCTs with 59 different comparisons. Most RCTs were small. Measures of healing were the time to complete healing, the proportion of ulcers healed within the trial period (typically 12 weeks), the change in ulcer size, and the rate of change in ulcer size. Evidence from 8 trials indicated that venous ulcers healed more rapidly with compression than without. Findings suggested that multicomponent systems (bandages or stockings) were more effective than single-component compression. Also, multicomponent systems containing an elastic bandage appeared more effective than those composed mainly of inelastic constituents. Although these meta-analyses did not include time to healing, studies included in the review reported the mean time to ulcer healing was approximately 2 months, while the median time to healing in other reports was 3 to 5 months.

Outcomes
The general outcomes of interest are symptoms, change in disease status, morbid events, and QOL.
The primary endpoints of interest for trials of wound closure are as follows, consistent with guidance from the FDA for industry in developing products for treatment of chronic cutaneous ulcer and burn wounds:

1. Incidence of complete wound closure.
2. Time to complete wound closure (reflecting accelerated wound closure).
3. Incidence of complete wound closure following surgical wound closure.
4. Pain control.

Time to wound closure can be measured at 6 months with longer-term outcomes apparent by 1 year. Complex wounds may require more than 6 months to heal.

Study Selection Criteria

As described above.

Evidence Review

Apligraf

Falanga et al (1998) reported on a multicenter randomized trial of Apligraf living cell therapy. A total of 293 patients with venous insufficiency and clinical signs of venous ulceration were randomized to compression therapy alone or to compression therapy and treatment with Apligraf. Apligraf was applied up to a maximum of 5 (mean, 3.3) times per patient during the initial 3 weeks. The primary endpoints were the percentage of patients with complete healing by 6 months after initiation of treatment and the time required for complete healing. At 6-month follow-up, the percentage of patients healed was higher with Apligraf (63% vs. 49%), and the median time to complete wound closure was shorter (61 days vs. 181 days). Treatment with Apligraf was superior to compression therapy in healing larger (>1000 mm²) and deeper ulcers and ulcers of more than 6 months in duration. There were no symptoms or signs of rejection, and the occurrence of adverse events was similar in both groups. This study was reviewed in a 2001 TEC Assessment, which concluded that Apligraf (Graftskin), in conjunction with good local wound care, met TEC criteria for the treatment of venous ulcers that fail to respond to conservative management.

Oasis Wound Matrix

Mostow et al (2005) reported on an industry-sponsored multicenter (12 sites) randomized trial that compared weekly treatment using Oasis Wound Matrix (xenogenic collagen scaffold from porcine small intestinal mucosa) with SOC in 120 patients who had chronic ulcers due to venous insufficiency that had not adequately responded to conventional therapy. Healing was assessed weekly for up to 12 weeks, with follow-up performed after 6 months to assess recurrence. After 12 weeks of treatment, there was a significant improvement in the percentage of wounds healed in the Oasis group (55% vs. 34%). After adjusting for baseline ulcer size, patients in the Oasis group were 3 times more likely to heal than those in the group receiving SOC. Patients in the SOC group whose wounds did not heal by week 12 were allowed to cross over to Oasis treatment. None of the healed patients treated with Oasis wound matrix who was seen for the 6-month follow-up experienced ulcer recurrence.

A research group in Europe has described 2 comparative studies of the Oasis matrix for mixed arteriovenous ulcers. In a quasirandomized study, Romanelli et al (2007) compared the efficacy of 2 extracellular matrix-based products, Oasis and Hyaloskin (extracellular matrix with hyaluronic acid). Fifty-four patients with mixed arteriovenous leg ulcers were assigned to the 2 arms based on order of entry into the study; 50 patients completed the study. Patients were followed twice weekly, and dressings changed more than once a week, only when necessary. After 16 weeks of treatment, complete wound closure was achieved in 82.6% of Oasis-treated ulcers compared with 46.2% of Hyaloskin-treated ulcers. Oasis treatment significantly increased the time to dressing change (mean, 6.4 days vs. 2.4 days), reduced pain on a 10-point scale (3.7 vs. 6.2), and improved patient comfort (2.5 vs. 6.7).
Romanelli et al (2010) compared Oasis with a moist wound dressing (SOC) in 23 patients with mixed arteriovenous ulcers and 27 patients with venous ulcers.52 The trial was described as randomized, but the method of randomization was not described. After the 8-week study period, patients were followed monthly for 6 months to assess wound closure. Complete wound closure was achieved in 80% of the Oasis-treated ulcers at 8 weeks compared with 65% of the SOC group. On average, Oasis-treated ulcers achieved complete healing in 5.4 weeks compared with 8.3 weeks for the SOC group. Treatment with Oasis also increased the time to dressing change (5.2 days vs. 2.1 days) and the percentage of granulation tissue formed (65% vs. 38%).

Subsection Summary: Apligraf or Oasis Wound Matrix for Lower-Extremity Ulcers due to Venous Insufficiency

RCTs have demonstrated the efficacy of Apligraf or Oasis Wound Matrix over SOC for lower-extremity ulcers due to venous insufficiency. Evidence is considered sufficient for these products.

Bioengineered Skin Substitutes Other Than Apligraf or Oasis Wound Matrix for Lower-Extremity Ulcers due to Venous Insufficiency

Demagraft
Demagraft living cell therapy has been approved by the FDA for repair of diabetic foot ulcers. Use of Demagraft for venous ulcers is an off-label indication. Harding et al (2013) reported an open-label multicenter RCT that compared Demagraft plus compression therapy (n=186) with compression therapy alone (n=180).53 The trial had numerous inclusion and exclusion criteria that restricted the population to patients who had nonhealing ulcers with compression therapy but had the capacity to heal. ITT analysis revealed no significant difference between the 2 groups in the primary outcome measure, the proportion of patients with completely healed ulcers by 12 weeks (34% Demagraft vs. 31% control). Prespecified subgroup analysis revealed a significant improvement in the percentage of wounds healed for ulcers of 12 months or less in duration (52% vs. 37%) and for ulcers of 10 cm or less in diameter (47% vs. 39%). There were no significant differences in the secondary outcomes of time to healing, complete healing by week 24, and percent reduction in ulcer area.

PriMatrix
Karr (2011) published a retrospective comparison of PriMatrix (xenogenic ADM) and Apligraf in 28 venous stasis ulcers.45 The first 14 venous stasis ulcers matching the inclusion and exclusion criteria for each graft were compared. Criteria were venous stasis ulcers of 4 weeks in duration, at least 1 cm² in diameter, and to a depth of subcutaneous tissue, with healthy tissue at the ulcer edge, adequate arterial perfusion to heal, and ability to tolerate compression therapy. The time to complete healing for PriMatrix was 32 days with 1.3 applications compared with 63 days with 1.7 applications for Apligraf. Although promising, additional study with a larger number of subjects is needed to assess the effect of PriMatrix treatment in comparison with current SOC.

DemACELL
Cazzell (2019) published an RCT on DemACELL ADM for venous leg ulcers in 18 patients (see Table 6).54 This was part of a larger study of the acellular dermal matrix for chronic wounds of the lower extremity in 202 patients; the component on diabetic lower extremity ulcers was previously reported by Cazzell et al (2017) and is described above.40 When including patients who required more than 1 application of the ADM, the percent of wounds closed at 24 weeks was 29.4% with DemACELL and 33.3% with SOC, suggesting no benefit DemACELL for the treatment of venous ulcers in this small substudy.
Table 6. Summary of Key RCT Characteristics

<table>
<thead>
<tr>
<th>Study; Trial</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Interventions</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cazzell (2019) NCT01970163</td>
<td>US</td>
<td>7</td>
<td>2013-2016</td>
<td>Venous leg ulcer present for at least 60 days (n=18)</td>
<td>1 or 2 applications of DermACELL plus SOC (n=18)</td>
<td>SOC (debridement and compression, n=10)</td>
</tr>
</tbody>
</table>

RCT: randomized controlled trial; SOC: standard of care

Section Summary: Bioengineered Skin Substitutes Other Than Apligraf or Oasis Wound Matrix for Lower-Extremity Ulcers due to Venous Insufficiency

In a moderately large RCT, Dermagraft was not shown to be more effective than controls in the primary or secondary endpoints for the entire population and was slightly more effective than controls (an 8%-15% increase in healing) only in subgroups of patients with ulcer duration of 12 months or less or wound diameter of 10 cm or less. An initial study with 18 patients found that DermACELL (ADM) was not more effective than SOC. Additional study with a larger number of subjects is needed to evaluate the effect of PriMatrix treatment compared with current SOC.

Deep Dermal Burns

Clinical Context and Therapy Purpose

The purpose of bio-engineered soft tissue substitutes in patients who have deep dermal burns is to provide a treatment option that is an alternative to or an improvement on existing therapies.

The question addressed in this evidence review is: Do bio-engineered soft tissue substitutes in patients with deep dermal burns improve the net health outcome?

The following PICO was used to select literature to inform this review.

- **Patients**
 The relevant population(s) of interest is patients with deep dermal burns.

- **Interventions**
 The therapy being considered is bioengineered skin substitutes.

- **Comparators**
 The following therapies are currently being used; standard therapy for burns.

- **Outcomes**
 The general outcomes of interest are disease-specific survival, symptoms, change in disease status, morbid events, functional outcomes, QOL, and treatment-related morbidity.

 The primary endpoints of interest for trials of wound closure are as follows, consistent with guidance from the FDA for industry in developing products for treatment of chronic cutaneous ulcer and burn wounds:

 1. Incidence of complete wound closure.
 2. Time to complete wound closure (reflecting accelerated wound closure).
 3. Incidence of complete wound closure following surgical wound closure.
 4. Pain control.

 Time to wound closure can be measured at 6 months with longer-term outcomes apparent by 1 year.

- **Study Selection Criteria**
 As described above.
Evidence Review

Epicel

One case series from 2000 has described the treatment of 30 severely burned patients with Epicel. The cultured epithelial autografts were applied to a mean of 37% of total body surface area (TBSA). Epicel achieved permanent coverage of a mean of 26% of TBSA, an area similar to that covered by conventional autografts (mean, 25%). Survival was 90% in these severely burned patients.

Integra Dermal Regeneration Template

A 2013 study compared Integra with split-thickness skin graft and with viscose cellulose sponge (Cellonex), using three, 10´5 cm test sites on each of 10 burn patients. The surrounding burn area was covered with meshed autograft. Biopsies were taken from each site on days 3, 7, 14, and 21, and at months 3 and 12. The tissue samples were stained and examined for markers of inflammation and proliferation. The Vancouver Scar Scale was used to assess scars. At 12-month follow-up, the 3 methods resulted in similar clinical appearance, along with similar histologic and immunohistochemical findings.

Branski et al (2007) reported on a randomized trial that compared Integra with a standard autograft-allograft technique in 20 children with an average burn size of 73% TBSA (71% full-thickness burns). Once vascularized (about 14-21 days), the Silastic epidermis was stripped and replaced with thin (0.05-0.13 mm) epidermal autograft. There were no significant differences between the Integra group and controls in burn size (70% vs. 74% TBSA), mortality (40% vs. 30%), and hospital length of stay (41 vs. 39 days), all respectively. Long-term follow-up revealed a significant increase in bone mineral content and density (24 months) and improved scarring in terms of height, thickness, vascularity, and pigmentation (at 12 months and 18-24 months) in the Integra group. No differences were observed between groups in the time to first reconstructive procedure, cumulative reconstructive procedures required during 2 years, and cumulative operating room time required for these procedures. The authors concluded that Integra can be used for immediate wound coverage in children with severe burns without the associated risks of cadaver skin.

Heimbach et al (2003) reported on a multicenter (13 U.S. burn care facilities) postapproval study involving 222 burn injury patients (36.5% TBSA; range, 1%-95%) who were treated with Integra Dermal Regeneration Template. Within 2 to 3 weeks, the dermal layer regenerated, and a thin epidermal autograft was placed over the wound. The incidence of infection was 16.3%. Mean take rate (absence of graft failure) of Integra was 76.2%; the median take rate was 98%. The mean take rate of epidermal autograft placed over Integra was 87.7%; the median take rate was 95%.

TransCyte

TransCyte is no longer commercially available.

Earlier studies included a report by Lukish et al (2001) that found improved healing in 20 consecutive cases of pediatric burns greater than 7% TBSA that underwent wound closure using TransCyte compared to the previous 20 consecutive burn cases greater than 7% TBSA that received standard therapy. Amani et al (2006) found significant improvement in healing in 110 consecutive patients who had deep partial-thickness burns treated with TransCyte as compared to results from the American Burn Association Patient Registry for similar burns.

Section Summary: Deep Dermal Burns

Epicel is FDA-approved under a humanitarian device exemption (HDE) for the treatment of deep dermal or full-thickness burns comprising a TBSA of 30% or more, with patient survival of 90%. Integra Dermal Regeneration Template has been compared with autograft in a within-subject study and with autograft-allograft in a small RCT with 10 patients per group. Outcomes are at least as good as with autograft or allograft, with a reduction in scarring and without risks associated with cadaver skin. This product has also been studied in a large series with over 222
burn patients, showing a take rate of 76% and with a take rate of epidermal autograft placed over Integra of 87.7%.

Other Indications

Dystrophic Epidermolysis Bullosa

OrCel was approved under an HDE for use in patients with dystrophic epidermolysis bullosa undergoing hand reconstruction surgery, to close and heal wounds created by the surgery, including those at donor sites. HDE status has been withdrawn for Dermagraft for this indication. Fivenson et al (2003) reported the off-label use of Apligraf in 5 patients with recessive dystrophic epidermolysis bullosa who underwent syndactyly release.61.

Section Summary: Dystrophic Epidermolysis Bullosa

Dystrophic epidermolysis bullosa is a rare disorder. Because this is a rare disorder, it is unlikely that RCTs will be conducted to evaluate whether OrCel improves health outcomes for this condition. Therefore, the HDE for OrCel is considered sufficient.

Punch Biopsy Wounds

Baldursson et al (2015) reported a double-blinded RCT with 81 patients (162 punch biopsy wounds) that compared Kerecis Omega3 Wound (derived from fish skin) with Oasis SIS ECM (porcine small intestinal submucosa extracellular matrix).62. The primary outcome (the percentage of wounds healed at 28 days) was similar for the fish skin ADM (95%) and the porcine SIS ECM (96.3%). The rate of healing was faster with Kerecis Omega3 (p=0.041). At 21 days, 72.5% of the fish skin ADM group had healed compared with 56% of the porcine SIS ECM group. Interpretation of this study is limited because it did not include an accepted control condition for this indication.

Split-Thickness Donor Sites

There is limited evidence to support the efficacy of OrCel compared with SOC for the treatment of split-thickness donor sites in burn patients. Still et al (2003) examined the safety and efficacy of bilayered OrCel to facilitate wound closure of split-thickness donor sites in 82 severely burned patients.63 Each patient had 2 designated donor sites that were randomized to a single treatment of OrCel or standard dressing (Biobrane-L). The healing time for OrCel sites was significantly shorter than for sites treated with a standard dressing, enabling earlier recropping. OrCel sites also exhibited a nonsignificant trend for reduced scarring. Additional studies are needed to evaluate the effect of this product on health outcomes.

Pressure Ulcers

Brown-Etris et al (2019) reported an RCT of 130 patients with stage 3 or stage 4 pressure ulcers who were treated with Oasis Wound Matrix (extracellular collagen matrix derived from porcine small intestinal submucosa) plus SOC or SOC alone.64 At 12 weeks, the proportion of wounds healed in the collagen matrix group was 40% compared to 29% in the SOC group. This was not statistically significant (p=0.111). There was a statistical difference in the proportion of patients who achieved 90% wound healing (55% vs. 38% p=0.037), but complete wound healing is the preferred and most reliable measure. It is possible that longer follow-up may have identified a significant improvement in the percent of wounds healed. The study did include 6-month follow-up, but there was high loss to follow-up and an insufficient number of patients at this time point for statistical comparison.

Miscellaneous

In addition to indications previously reviewed, off-label uses of bioengineered skin substitutes have included inflammatory ulcers (e.g., pyoderma gangrenosum, vasculitis), sclerodema digital ulcers, post-keloid removal wounds, genetic conditions, and variety of other conditions.65 Products that have been FDA-approved or -cleared for one indication (e.g., lower-extremity ulcers) have also been used off-label in place of other FDA-approved or -cleared products (e.g., for burns).66 No controlled trials were identified for these indications.
Summary of Evidence

Breast Reconstruction
For individuals who are undergoing breast reconstruction who receive allogeneic ADM products, the evidence includes RCTs and systematic reviews. Relevant outcomes are symptoms, morbid events, functional outcomes, quality of life (QOL), and treatment-related morbidity. A systematic review found no difference in overall complication rates with ADM allograft compared with standard procedures for breast reconstruction. Reconstructions with ADM have been reported to have higher seroma, infection, and necrosis rates than reconstructions without ADM. However, capsular contracture and malposition of implants may be reduced. Thus, in cases where there is limited tissue coverage, the available evidence may inform patient decision making about reconstruction options. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Tendon Repair
For individuals who are undergoing tendon repair who receive Graftjacket, the evidence includes an RCT. Relevant outcomes are symptoms, morbid events, functional outcomes, QOL, and treatment-related morbidity. The RCT identified found improved outcomes with the Graftjacket ADM allograft for rotator cuff repair. Although these results were positive, additional study with a larger number of patients is needed to evaluate the consistency of the effect. The evidence is insufficient to determine the effects of the technology on health outcomes.

Surgical Repair of Hernias or Parastomal Reinforcement
For individuals who are undergoing surgical repair of hernias or parastomal reinforcement who receive acellular collagen-based scaffolds, the evidence includes RCTs. Relevant outcomes are symptoms, morbid events, functional outcomes, QOL, and treatment-related morbidity. Several comparative studies including RCTs have shown no difference in outcomes between tissue-engineered skin substitutes and either standard synthetic mesh or no reinforcement. The evidence is sufficient to determine that the technology is unlikely to improve the net health outcome.

Diabetic Lower-Extremity Ulcers
For individuals who have diabetic lower-extremity ulcers who receive AlloPatch, Apligraf, Dermagraft, or Integra, the evidence includes RCTs. Relevant outcomes are symptoms, change in disease status, morbid events, and QOL. RCTs have demonstrated the efficacy of AlloPatch (reticular ADM), Apligraf and Dermagraft (living cell therapy), and Integra (biosynthetic) over the standard of care (SOC). The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have diabetic lower-extremity ulcers who receive ADM products other than AlloPatch, Apligraf, Dermagraft, or Integra, the evidence includes RCTs. Relevant outcomes are symptoms, change in disease status, morbid events, and QOL. Results from a multicenter RCT showed some benefit of DemACELL that was primarily for the subgroup of patients who only required a single application of the ADM. Studies are needed to further define the population who might benefit from this treatment. Additional study with a larger number of subjects is needed to evaluate the effect of Graftjacket, TheraSkin, DemACELL, Cytal, PriMatrix, and Oasis Wound Matrix, compared with current SOC or other advanced wound therapies. The evidence is insufficient to determine the effects of the technology on health outcomes.

Lower-Extremity Ulcers due to Venous Insufficiency
For individuals who have lower-extremity ulcers due to venous insufficiency who receive Apligraf or Oasis Wound Matrix, the evidence includes RCTs. Relevant outcomes are symptoms, change in disease status, morbid events, and QOL. RCTs have demonstrated the efficacy of Apligraf living cell therapy and xenogenic Oasis Wound Matrix over the SOC. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome. For individuals who have lower-extremity ulcers due to venous insufficiency who receive bioengineered skin substitutes other than Apligraf or Oasis Wound Matrix, the evidence includes...
RCTs. Relevant outcomes are disease-specific survival, symptoms, change in disease status, morbid events, and QOL. In a moderately large RCT, Dermagraft was not shown to be more effective than controls for the primary or secondary endpoints in the entire population and was only slightly more effective than controls (an 8%-15% increase in healing) in subgroups of patients with ulcer durations of 12 months or less or size of 10 cm or less. Additional study with a larger number of subjects is needed to evaluate the effect of the xenogenic PrMMatrix skin substitute versus the current SOC. The evidence is insufficient to determine the effects of the technology on health outcomes.

Dystrophic Epidermolysis Bullosa
For individuals who have dystrophic epidermolysis bullosa who receive OrCel, the evidence includes case series. Relevant outcomes are symptoms, change in disease status, morbid events, and QOL. OrCel was approved under a humanitarian drug exemption for use in patients with dystrophic epidermolysis bullosa undergoing hand reconstruction surgery, to close and heal wounds created by the surgery, including those at donor sites. Outcomes have been reported in small series (e.g., 5 patients). The evidence is insufficient to determine the effects of the technology on health outcomes.

Deep Dermal Burns
For individuals who have deep dermal burns who receive bioengineered skin substitutes (i.e., Epicel, Integra Dermal Regeneration Template), the evidence includes RCTs. Relevant outcomes are symptoms, change in disease status, morbid events, functional outcomes, QOL, and treatment-related morbidity. Overall, few skin substitutes have been approved, and the evidence is limited for each product. Epicel (living cell therapy) has received FDA approval under a humanitarian device exemption for the treatment of deep dermal or full-thickness burns comprising a total body surface area of 30% or more. Comparative studies have demonstrated improved outcomes for biosynthetic skin substitute Integra Dermal Regeneration Template for the treatment of burns. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Supplemental Information

Clinical Input From Physician Specialty Societies and Academic Medical Centers
While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

2016 Input
In response to requests from Blue Cross Blue Shield Association, input was received from 2 physician specialty societies and 3 academic medical centers in 2016. Input was requested on the equivalency of products within the categories of amniotic membrane, living cell therapies, and biosynthetic skin substitutes for the treatment of diabetic foot ulcers and nonocular burns (biosynthetic only). Input on the equivalency of products within these categories was mixed.

2014 Input
In response to requests from Blue Cross Blue Shield Association, input was received from 3 physician specialty societies and 4 academic medical centers in 2014. In addition to questions on medical necessity for different indications, input was specifically requested on the equivalency of products within the different categories (e.g., a cellular dermal matrix [ADM], living cell therapy, xenogeneic collagen scaffold, amniotic membrane). Five reviewers addressed the use of ADM products for breast reconstruction and most considered the various ADM products (AlloDerm, AlloMax, DermaMatrix, FlexHD, Graftjacket) to have similar outcomes when used for breast reconstructive surgery, although differences in firmness and stretch of the products were noted. Six reviewers addressed questions on bioengineered skin and soft tissue substitutes for diabetic and venous lower-extremity ulcers. Responses were mixed, although most reviewers considered living cell therapies to be equivalent for these indications. Most reviewers
did not consider xenogeneic ADM products (e.g., PriMatrix) or amniotic membrane (e.g., EpiFix) to be medically necessary for any indication.

2012 Input
In response to requests, input was received from 3 physician specialty societies and 2 academic medical centers while this policy was under review in 2012. Most reviewers supported the indications and products described in this policy. Input was requested on the use of an interpositional spacer after parotidectomy. Support for this indication was mixed. Some reviewers suggested use of other products and/or additional indications; however, the input on these products/indications was not uniform. Reviewers provided references for the additional indications; these were subsequently reviewed.

2009 Input
In response to requests, input was received from 1 physician specialty society (2 physicians) and 1 academic medical center while this policy was under review in 2009. All reviewers indicated that use of AlloDerm in breast reconstruction surgery should be available for use during breast reconstructive surgery.

Practice Guidelines and Position Statements
Dermal matrix is currently used to increase soft tissue coverage, support the implant pocket, improve contour, and reduce pain with expansion. However, evidence to support these improved surgical outcomes are limited. Some evidence has suggested that use of ADM is associated with increased postoperative complications, specifically related to infection and seroma. Overall, ASPS found that evidence on ADM products in postmastectomy expander/implant breast reconstruction was varied and conflicting, and gave a grade C recommendation based on level III evidence that surgeons should evaluate each clinical case individually and objectively determine the use of ADM.

National Institute for Health and Care Excellence
In 2019, the National Institute for Health and Care Excellence updated its guidance on the prevention and management of diabetic foot problems.67 The Institute recommended that clinicians “consider dermal or skin substitutes as an adjunct to standard care when treating diabetic foot ulcers, only when healing has not progressed and on the advice of the multidisciplinary foot care service.”

It was emphasized that none of these measures had been shown to improve the resolution of infection and that they were expensive, not universally available, might require consultation with experts, and reports supporting their utility were mostly flawed.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
The Centers for Medicare & Medicaid Services (CMS) issued the following national coverage determination: porcine (pig) skin dressings are covered, if reasonable and necessary for the individual patient as an occlusive dressing for burns, donor sites of a homograft, and decubiti and other ulcers.68, if the item is furnished on a different date of service as the primary service. In 2019, CMS reported that it is finalizing the proposal to continue the policy established in CY 2018 to assign skin substitutes to the low cost or high-cost group.69 In addition, CMS presented several payment ideas to change how skin substitute products are paid and solicited comments on these ideas to be used for future rulemaking.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this review are listed in Table 7.
Table 7. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT03285698</td>
<td>A Randomized, Prospective Trial Comparing the Clinical Outcomes for DermACELL® Compared With Integra® Bilayer Wound Matrix</td>
<td>100</td>
<td>Oct 2020</td>
</tr>
<tr>
<td>NCT02587403a</td>
<td>A Randomized, Prospective Study Comparing Fortiva™ Porcine Dermis vs. Strattice™ Reconstructive Tissue Matrix in Patients Undergoing Complex Open Primary Ventral Hernia Repair</td>
<td>120</td>
<td>Oct 2020</td>
</tr>
<tr>
<td>NCT02322554</td>
<td>The Registry of Cellular and Tissue Based Therapies for Chronic Wounds and Ulcers</td>
<td>50,000</td>
<td>Jan 2020</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01987700a</td>
<td>Multi-Center Study To Examine The Use Of Flex HD® And Strattice In The Repair Of Large Abdominal Wall Hemias</td>
<td>120</td>
<td>Aug 2018 (completed)</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

a Denotes industry-sponsored or cosponsored trial.

References

41. Karl J C. Retrospective comparison of diabetic foot ulcer and venous stasis ulcer healing outcome between a dermal repair scaffold (PriMatrix) and a bilayered living cell therapy (Apligraf). Advances in skin & wound care. Mar 2011;24(3):119-125. PMID 21326023

Documentation for Clinical Review

Please provide the following documentation:
- History and physical and/or consultation notes including:
 - Specific diagnosis requiring skin or soft tissue substitute
 - Previous treatment plan and response
 - Progress notes for the past six months
- Exact brand name of skin or soft tissue substitute to be used

Post Service (in addition to the above, please include the following):
- Procedure report(s)
- Skin or soft tissue substitute invoice (if applicable)

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy. Inclusion or exclusion of codes does not constitute or imply member coverage or provider reimbursement.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT®</td>
<td>0627T</td>
<td>Percutaneous injection of allogeneic cellular and/or tissue-based product, intervertebral disc, unilateral or bilateral injection, with fluoroscopic guidance, lumbar; first level (Code effective 1/1/2021)</td>
</tr>
<tr>
<td>CPT®</td>
<td>0628T</td>
<td>Percutaneous injection of allogeneic cellular and/or tissue-based product, intervertebral disc, unilateral or bilateral injection, with fluoroscopic guidance, lumbar; each additional level (List separately in addition to code for primary procedure) (Code effective 1/1/2021)</td>
</tr>
<tr>
<td>CPT®</td>
<td>0629T</td>
<td>Percutaneous injection of allogeneic cellular and/or tissue-based product, intervertebral disc, unilateral or bilateral injection, with CT guidance, lumbar; first level (Code effective 1/1/2021)</td>
</tr>
<tr>
<td>CPT®</td>
<td>0630T</td>
<td>Percutaneous injection of allogeneic cellular and/or tissue-based product, intervertebral disc, unilateral or bilateral injection, with CT guidance, lumbar; each additional level (List separately in addition to code for primary procedure) (Code effective 1/1/2021)</td>
</tr>
<tr>
<td></td>
<td>15040</td>
<td>Harvest of skin for tissue cultured skin autograft, 100 sq cm or less</td>
</tr>
<tr>
<td></td>
<td>15050</td>
<td>Pinch graft, single or multiple, to cover small ulcer, tip of digit, or other minimal open area (except on face), up to defect size 2 cm diameter</td>
</tr>
<tr>
<td>Type</td>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>15100</td>
<td>15100</td>
<td>Split-thickness autograft, trunk, arms, legs; first 100 sq cm or less, or 1% of body area of infants and children (except 15050)</td>
</tr>
<tr>
<td>15101</td>
<td>15101</td>
<td>Split-thickness autograft, trunk, arms, legs; each additional 100 sq cm, or each additional 1% of body area of infants and children, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>15110</td>
<td>15110</td>
<td>Epidermal autograft, trunk, arms, legs; first 100 sq cm or less, or 1% of body area of infants and children</td>
</tr>
<tr>
<td>15111</td>
<td>15111</td>
<td>Epidermal autograft, trunk, arms, legs; each additional 100 sq cm, or each additional 1% of body area of infants and children, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>15115</td>
<td>15115</td>
<td>Epidermal autograft, face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits; first 100 sq cm or less, or 1% of body area of infants and children</td>
</tr>
<tr>
<td>15116</td>
<td>15116</td>
<td>Epidermal autograft, face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits; each additional 100 sq cm, or each additional 1% of body area of infants and children, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>15120</td>
<td>15120</td>
<td>Split-thickness autograft, face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits; first 100 sq cm or less, or 1% of body area of infants and children (except 15050)</td>
</tr>
<tr>
<td>15121</td>
<td>15121</td>
<td>Split-thickness autograft, face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits; each additional 100 sq cm, or each additional 1% of body area of infants and children, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>15130</td>
<td>15130</td>
<td>Dermal autograft, trunk, arms, legs; first 100 sq cm or less, or 1% of body area of infants and children</td>
</tr>
<tr>
<td>15131</td>
<td>15131</td>
<td>Dermal autograft, trunk, arms, legs; each additional 100 sq cm, or each additional 1% of body area of infants and children, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>15135</td>
<td>15135</td>
<td>Dermal autograft, face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits; first 100 sq cm or less, or 1% of body area of infants and children</td>
</tr>
<tr>
<td>15136</td>
<td>15136</td>
<td>Dermal autograft, face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits; each additional 100 sq cm, or each additional 1% of body area of infants and children, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>15150</td>
<td>15150</td>
<td>Tissue cultured skin autograft, trunk, arms, legs; first 25 sq cm or less</td>
</tr>
<tr>
<td>15151</td>
<td>15151</td>
<td>Tissue cultured skin autograft, trunk, arms, legs; additional 1 sq cm to 75 sq cm (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>15152</td>
<td>15152</td>
<td>Tissue cultured skin autograft, trunk, arms, legs; each additional 100 sq cm, or each additional 1% of body area of infants and children, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>15155</td>
<td>15155</td>
<td>Tissue cultured skin autograft, face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits; first 25 sq cm or less</td>
</tr>
<tr>
<td>15156</td>
<td>15156</td>
<td>Tissue cultured skin autograft, face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits; additional 1 sq cm to 75 sq cm (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>Type</td>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>15157</td>
<td>Tissue cultured skin autograft, face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits; each additional 100 sq cm, or each additional 1% of body area of infants and children, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>15200</td>
<td>Full thickness graft, free, including direct closure of donor site, trunk; 20 sq cm or less</td>
</tr>
<tr>
<td></td>
<td>15201</td>
<td>Full thickness graft, free, including direct closure of donor site, trunk; each additional 20 sq cm, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>15220</td>
<td>Full thickness graft, free, including direct closure of donor site, scalp, arms, and/or legs; 20 sq cm or less</td>
</tr>
<tr>
<td></td>
<td>15221</td>
<td>Full thickness graft, free, including direct closure of donor site, scalp, arms, and/or legs; each additional 20 sq cm, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>15240</td>
<td>Full thickness graft, free, including direct closure of donor site, forehead, cheeks, chin, mouth, neck, axillae, genitalia, hands, and/or feet; 20 sq cm or less</td>
</tr>
<tr>
<td></td>
<td>15241</td>
<td>Full thickness graft, free, including direct closure of donor site, forehead, cheeks, chin, mouth, neck, axillae, genitalia, hands, and/or feet; each additional 20 sq cm, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>15260</td>
<td>Full thickness graft, free, including direct closure of donor site, nose, ears, eyelids, and/or lips; 20 sq cm or less</td>
</tr>
<tr>
<td></td>
<td>15261</td>
<td>Full thickness graft, free, including direct closure of donor site, nose, ears, eyelids, and/or lips; each additional 20 sq cm, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>15271</td>
<td>Application of skin substitute graft to trunk, arms, legs, total wound surface area up to 100 sq cm; first 25 sq cm or less wound surface area</td>
</tr>
<tr>
<td></td>
<td>15272</td>
<td>Application of skin substitute graft to trunk, arms, legs, total wound surface area up to 100 sq cm; each additional 25 sq cm wound surface area, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>15273</td>
<td>Application of skin substitute graft to trunk, arms, legs, total wound surface area greater than or equal to 100 sq cm; first 100 sq cm wound surface area, or 1% of body area of infants and children</td>
</tr>
<tr>
<td></td>
<td>15274</td>
<td>Application of skin substitute graft to trunk, arms, legs, total wound surface area greater than or equal to 100 sq cm; each additional 100 sq cm wound surface area, or part thereof, or each additional 1% of body area of infants and children, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>15275</td>
<td>Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits, total wound surface area up to 100 sq cm; first 25 sq cm or less wound surface area</td>
</tr>
<tr>
<td></td>
<td>15276</td>
<td>Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits, total wound surface area up to 100 sq cm; each additional 25 sq cm wound surface area, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>15277</td>
<td>Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits, total wound surface area</td>
</tr>
</tbody>
</table>

Reproduction without authorization from Blue Shield of California is prohibited
<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15278</td>
<td>Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits, total wound surface area greater than or equal to 100 sq cm; each additional 100 sq cm wound surface area, or part thereof, or each additional 1% of body area of infants and children, or part thereof (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>15777</td>
<td>Implantation of biologic implant (e.g., acellular dermal matrix) for soft tissue reinforcement (i.e., breast, trunk) (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td></td>
<td>A6460</td>
<td>Synthetic resorbable wound dressing, sterile, pad size 16 sq. in. or less, without adhesive border, each dressing</td>
</tr>
<tr>
<td></td>
<td>A6461</td>
<td>Synthetic resorbable wound dressing, sterile, pad size more than 16 sq. in. but less than or equal to 48 sq. in., without adhesive border, each dressing</td>
</tr>
<tr>
<td></td>
<td>C1849</td>
<td>Skin substitute, synthetic, resorbable, per sq cm (Note: HCPCS codes are effective 7/1/2020)</td>
</tr>
<tr>
<td></td>
<td>C9354</td>
<td>Tendon, porcine tissue matrix of nonhuman origin (Veritas), per sq cm</td>
</tr>
<tr>
<td></td>
<td>C9356</td>
<td>Tendon, pericardial tissue matrix of cross-linked collagen and glycosaminoglycan matrix (TenoGlide Tendon Protector Sheet), per sq cm</td>
</tr>
<tr>
<td></td>
<td>C9358</td>
<td>Dermal substitute, native, non-denatured collagen, fetal bovine origin (SurgiMend Collagen Matrix), per 0.5 sq cm</td>
</tr>
<tr>
<td></td>
<td>C9360</td>
<td>Dermal substitute, native, non-denatured collagen, neonatal bovine origin (SurgiMend Collagen Matrix), per 0.5 sq cm</td>
</tr>
<tr>
<td></td>
<td>C9363</td>
<td>Skin substitute (Integra Meshed Bilayer Wound Matrix), per square cm</td>
</tr>
<tr>
<td></td>
<td>C9364</td>
<td>Porcine implant, Pemacol, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4100</td>
<td>Skin substitute, not otherwise specified</td>
</tr>
<tr>
<td></td>
<td>Q4101</td>
<td>Apligraf, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4102</td>
<td>Oasis wound matrix, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4103</td>
<td>Oasis burn matrix, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4104</td>
<td>Integra bilayer matrix wound dressing (BMWD), per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4105</td>
<td>Integra dermal regeneration template (DRT) or Integra Omnigraft dermal regeneration matrix, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4106</td>
<td>Demagraft, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4107</td>
<td>GRAFTJACKET, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4108</td>
<td>Integra matrix, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4110</td>
<td>PriMatrix, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4111</td>
<td>GammaGraft, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4112</td>
<td>Cymetra, injectable, 1 cc</td>
</tr>
<tr>
<td></td>
<td>Q4113</td>
<td>GRAFTJACKET XPRESS, injectable, 1 cc</td>
</tr>
<tr>
<td></td>
<td>Q4114</td>
<td>Integra flowable wound matrix, injectable, 1 cc</td>
</tr>
<tr>
<td></td>
<td>Q4115</td>
<td>AlloSkin, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4116</td>
<td>AlloDerm, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4117</td>
<td>HYALOMATRIX, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4118</td>
<td>MatriStem micromatrix, 1 mg</td>
</tr>
<tr>
<td></td>
<td>Q4121</td>
<td>TheraSkin, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4122</td>
<td>DemACELL, DemACELL AWM or DemACELL AWM Porous, per sq cm</td>
</tr>
</tbody>
</table>
Bioengineered Skin and Soft Tissue Substitutes

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q4123</td>
<td>AlloSkin RT, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4124</td>
<td>OASIS ultra tri-layer wound matrix, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4125</td>
<td>ArthroFlex, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4126</td>
<td>MemoDerm, DemaSpan, TranZgraft or InteguPly, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4127</td>
<td>Talymed, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4128</td>
<td>FlexHD, AllopatchHD, or Matrix HD, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4130</td>
<td>Strattice TM, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4134</td>
<td>HMatrix, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4135</td>
<td>Medskin, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4136</td>
<td>E-ZDem, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4141</td>
<td>AlloSkin AC, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4142</td>
<td>XCM biologic tissue matrix, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4143</td>
<td>Repriza, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4146</td>
<td>Tensix, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4147</td>
<td>Architect, Architect PX, or Architect FX, extracellular matrix, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4149</td>
<td>Excellagen, 0.1 cc</td>
</tr>
<tr>
<td></td>
<td>Q4152</td>
<td>DemaPure, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4158</td>
<td>Kerec is omega3 per square cm</td>
</tr>
<tr>
<td></td>
<td>Q4161</td>
<td>Bio-ConneKt wound matrix, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4164</td>
<td>Helicoll, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4165</td>
<td>Keramatrix or Kerasorb, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4166</td>
<td>Cytal, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4167</td>
<td>Truskin, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4175</td>
<td>Miroderm, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4179</td>
<td>FlowerDerm, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4182</td>
<td>Transcyte per square cm</td>
</tr>
<tr>
<td></td>
<td>Q4193</td>
<td>Coll-e-derm, per square cm</td>
</tr>
<tr>
<td></td>
<td>Q4195</td>
<td>Puraply, per square cm</td>
</tr>
<tr>
<td></td>
<td>Q4196</td>
<td>Puraply am, per square cm</td>
</tr>
<tr>
<td></td>
<td>Q4197</td>
<td>Puraply xt, per square cm</td>
</tr>
<tr>
<td></td>
<td>Q4200</td>
<td>Skin te, per square cm</td>
</tr>
<tr>
<td></td>
<td>Q4202</td>
<td>Keroxx (2.5g/cc), 1cc</td>
</tr>
<tr>
<td></td>
<td>Q4203</td>
<td>Dema-gide, per square cm</td>
</tr>
<tr>
<td></td>
<td>Q4220</td>
<td>BellaCell HD or Surederm, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4222</td>
<td>ProgenaMatrix, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4226</td>
<td>MyOwn Skin, includes harvesting and preparation procedures, per sq cm</td>
</tr>
<tr>
<td></td>
<td>Q4238</td>
<td>Dem-Maxx, per sq cm (Code effective 7/1/2020)</td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/07/2011</td>
<td>Policy title change from Allograft Use in Breast Reconstructive Surgery with adoption of BCBSA Medical Policy</td>
</tr>
<tr>
<td>03/13/2012</td>
<td>Coding Update</td>
</tr>
</tbody>
</table>
Definitions of Decision Determinations

Medically Necessary: Services that are Medically Necessary include only those which have been established as safe and effective, are furnished under generally accepted professional standards to treat illness, injury or medical condition, and which, as determined by Blue Shield, are: (a) consistent with Blue Shield medical policy; (b) consistent with the symptoms or diagnosis; (c) not furnished primarily for the convenience of the patient, the attending Physician or other provider; (d) furnished at the most appropriate level which can be provided safely and effectively to the patient; and (e) not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of the Member’s illness, injury, or disease.

Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state government is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California/Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member's health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member's eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.
Questions regarding the applicability of this policy should be directed to the Prior Authorization Department at (800) 541-6652, or the Transplant Case Management Department at (800) 637-2066 ext. 3507708 or visit the provider portal at www.blueshieldca.com/provider.

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.
Appendix A

<table>
<thead>
<tr>
<th>POLICY STATEMENT</th>
<th>BEFORE</th>
<th>AFTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.01.113</td>
<td>Bioengineered Skin and Soft Tissue Substitutes</td>
<td>Bioengineered Skin and Soft Tissue Substitutes</td>
</tr>
</tbody>
</table>
| **Policy Statement:** | Breast reconstructive surgery using allogeneic acellular dermal matrix products (including each of the following: AlloDerm®, AlloMend®, Cortiva® [AlloMax™], DemaCELL™, DermaMatrix™, FlexHD®, FlexHD® Pliable™, Graftjacket®; see Policy Guidelines) may be considered *medically necessary* for any of the following:
 - When there is insufficient tissue expander or implant coverage by the pectoralis major muscle and additional coverage is required
 - When there is viable but compromised or thin postmastectomy skin flaps that are at risk of dehiscence or necrosis
 - The inframammary fold and lateral mammary folds have been undermined during mastectomy and reestablishment of these landmarks is needed | Breast reconstructive surgery using allogeneic acellular dermal matrix products (including each of the following: AlloDerm®, AlloMend®, Cortiva® [AlloMax™], DemaCELL™, DermaMatrix™, FlexHD®, FlexHD® Pliable™, Graftjacket®; see Policy Guidelines) may be considered *medically necessary* for any of the following:
 I. When there is insufficient tissue expander or implant coverage by the pectoralis major muscle and additional coverage is required
 II. When there is viable but compromised or thin postmastectomy skin flaps that are at risk of dehiscence or necrosis
 III. The inframammary fold and lateral mammary folds have been undermined during mastectomy and reestablishment of these landmarks is needed |
| **Treatment of chronic, noninfected, full-thickness diabetic lower-extremity ulcers may be considered *medically necessary* using any of the following tissue-engineered skin substitutes:**
 - AlloPatch®a
 - Apligraf®b
 - Dermagraft®b
 - Integra® Omnigraft™ Dermal Regeneration Matrix (also known as Omnigraft™) and Integra Flowable Wound Matrix | **Treatment of chronic, noninfected, full-thickness diabetic lower-extremity ulcers may be considered *medically necessary* using any of the following tissue-engineered skin substitutes:**
 I. AlloPatch®a
 II. Apligraf®b
 III. Dermagraft®b
 IV. Integra® Omnigraft™ Dermal Regeneration Matrix (also known as Omnigraft™) and Integra Flowable Wound Matrix |
| **Treatment of chronic, noninfected, partial- or full-thickness lower-extremity skin ulcers due to venous insufficiency, which have not adequately responded following a 1-month period of conventional ulcer therapy may be considered *medically necessary* using either of the following tissue-engineered skin substitutes:**
 - Apligraf®b
 - Oasis™ Wound Matrixc | **Treatment of chronic, noninfected, partial- or full-thickness lower-extremity skin ulcers due to venous insufficiency, which have not adequately responded following a 1-month period of conventional ulcer therapy may be considered *medically necessary* using either of the following tissue-engineered skin substitutes:**
 I. Apligraf®b
 II. Oasis™ Wound Matrixc |
| **Treatment of dystrophic epidermolysis bullosa may be considered *medically necessary* using the following tissue-engineered skin substitutes:** | |
POLICY STATEMENT
(No changes)

<table>
<thead>
<tr>
<th>BEFORE</th>
<th>AFTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREATMENT OF DYSTROPHIC EPIDERMOLYSIS BULLOSA</td>
<td>MEDICALLY NECESSARY using the following tissue-engineered skin substitutes:</td>
</tr>
<tr>
<td>- OrCel™ (for the treatment of mitten-hand deformity when standard wound therapy has failed and when provided in accordance with the humanitarian device exemption [HDE] specifications of the U.S. Food and Drug Administration [FDA])<sup>d</sup></td>
<td>I. OrCel™ (for the treatment of mitten-hand deformity when standard wound therapy has failed and when provided in accordance with the humanitarian device exemption [HDE] specifications of the U.S. Food and Drug Administration [FDA])<sup>d</sup></td>
</tr>
<tr>
<td>TREATMENT OF SECOND- AND THIRD-DEGREE BURNS</td>
<td>MEDICALLY NECESSARY using either of the following tissue-engineered skin substitutes:</td>
</tr>
<tr>
<td>- Epicel® (for the treatment of deep dermal or full-thickness burns comprising a total body surface area greater than or equal to 30% when provided in accordance with the HDE specifications of the FDA)<sup>d</sup></td>
<td>I. Epicel® (for the treatment of deep dermal or full-thickness burns comprising a total body surface area greater than or equal to 30% when provided in accordance with the HDE specifications of the FDA)<sup>d</sup></td>
</tr>
<tr>
<td>- Integra® Dermal Regeneration Template<sup>b</sup></td>
<td>II. Integra® Dermal Regeneration Template<sup>b</sup></td>
</tr>
</tbody>
</table>

^a Banked human tissue.
^b FDA premarket approval.
^c FDA 510(k) clearance.
^d FDA-approved under an HDE

All other uses of the bioengineered skin and soft tissue substitutes listed above are considered **INVESTIGATIONAL**.

All other skin and soft tissue substitutes not listed above are considered **INVESTIGATIONAL**, including, but not limited to:

I. ACell® UBM Hydrated/Lyophilized Wound Dressing
II. AlloSkin™
III. AlloSkin™ RT
IV. Aongen™ Collagen Matrix
V. Architect® ECM, PX, FX
VI. ArthroFlex™ (Flex Graft)
VII. Atlas Wound Matrix
VIII. Avagen Wound Dressing
IX. AxoGuard® Nerve Protector (AxoGen)
X. Biobrane©/Biobrane-L
XI. CollaCare®
XII. CollaCare® Dental
XIII. Collagen Wound Dressing (Oasis Research)
XIV. CollaGUARD®
<table>
<thead>
<tr>
<th>BEFORE</th>
<th>AFTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CollaCare® Dental</td>
<td>XV. CollaMend™</td>
</tr>
<tr>
<td>• Collagen Wound Dressing (Oasis Research)</td>
<td>XVI. CollaWound™</td>
</tr>
<tr>
<td>• CollaGUARD®</td>
<td>XVII. Colla®</td>
</tr>
<tr>
<td>• CollaMend™</td>
<td>XVIII. Collieva®</td>
</tr>
<tr>
<td>• CollaWound™</td>
<td>XIX. Conexa™</td>
</tr>
<tr>
<td>• Collexa®</td>
<td>XX. Coreleader Colla-Pad</td>
</tr>
<tr>
<td>• Collieva®</td>
<td>XXI. CorMatrix®</td>
</tr>
<tr>
<td>• Conexa™</td>
<td>XXII. Cymetra™ (Micronized AlloDerm™)</td>
</tr>
<tr>
<td>• Coreleader Colla-Pad</td>
<td>XXIII. CytaI™ (previously MatriStem®)</td>
</tr>
<tr>
<td>• CorMatrix®</td>
<td>XXIV. Demadapt™ Wound Dressing</td>
</tr>
<tr>
<td>• Cymetra™ (Micronized AlloDerm™)</td>
<td>XXV. DemaPure™</td>
</tr>
<tr>
<td>• CytaI™ (previously MatriStem®)</td>
<td>XXVI. DemaSpan™</td>
</tr>
<tr>
<td>• Dermadapt™ Wound Dressing</td>
<td>XXVII. DressSkin</td>
</tr>
<tr>
<td>• DemaPure™</td>
<td>XXVIII. Durepair Regeneration Matrix®</td>
</tr>
<tr>
<td>• DemaSpan™</td>
<td>XXIX. Endoform Dermal Template™</td>
</tr>
<tr>
<td>• DressSkin</td>
<td>XXX. ENDURAGen™</td>
</tr>
<tr>
<td>• Durepair Regeneration Matrix®</td>
<td>XXXI. Excellagen</td>
</tr>
<tr>
<td>• Endoform Dermal Template™</td>
<td>XXXII. ExpressGraft™</td>
</tr>
<tr>
<td>• ENDURAGen™</td>
<td>XXXIII. E-ZDem™</td>
</tr>
<tr>
<td>• Excellagen</td>
<td>XXXIV. FlexGraft®</td>
</tr>
<tr>
<td>• ExpressGraft™</td>
<td>XXXV. GammaGraft</td>
</tr>
<tr>
<td>• E-ZDem™</td>
<td>XXXVI. Graftjacket® Xpress, injectable</td>
</tr>
<tr>
<td>• FlexiGraft®</td>
<td>XXXVII. Helicoll™</td>
</tr>
<tr>
<td>• GammaGraft</td>
<td>XXXVIII. Hyalomatrix®</td>
</tr>
<tr>
<td>• Graftjacket® Xpress, injectable</td>
<td>XXXIX. Hyalomatrix® PA</td>
</tr>
<tr>
<td>• Helicoll™</td>
<td>XL. hMatrix®</td>
</tr>
<tr>
<td>• Hyalomatrix®</td>
<td>XLI. Integra™ Biayer Wound Matrix</td>
</tr>
<tr>
<td>• Hyalomatrix® PA</td>
<td>XLI. Keramatrix®</td>
</tr>
<tr>
<td>• hMatrix®</td>
<td>XLII. Kerecis™</td>
</tr>
<tr>
<td>• Integra™ Biayer Wound Matrix</td>
<td>XLIV. MariGen™/Kerecis™ Omega 3™</td>
</tr>
<tr>
<td>• Keramatrix®</td>
<td>XLV. MatriDerm®</td>
</tr>
<tr>
<td>• Kerecis™</td>
<td>XLVI. Matrix HD™</td>
</tr>
<tr>
<td>• MariGen™/Kerecis™ Omega 3™</td>
<td>XLVII. Mediskin®</td>
</tr>
<tr>
<td>• MatriDerm®</td>
<td>XLVIII. MemoDerm™</td>
</tr>
<tr>
<td>• Matrix HD™</td>
<td>XLI. Microderm® biologic wound matrix</td>
</tr>
<tr>
<td>• Mediskin®</td>
<td>L. NeoForm™</td>
</tr>
<tr>
<td>• MemoDerm™</td>
<td>L. NuCel</td>
</tr>
<tr>
<td>• Microderm® biologic wound matrix</td>
<td>LII. Oasis® Burn Matrix</td>
</tr>
<tr>
<td>POLICY STATEMENT</td>
<td>(No changes)</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>BEFORE</td>
<td>AFTER</td>
</tr>
<tr>
<td>• NeoForm™</td>
<td>LIII. Oasis® Ultra</td>
</tr>
<tr>
<td>• NuCel</td>
<td>LIV. Pelvicol®/PelviSoft®</td>
</tr>
<tr>
<td>• Oasis® Bum Matrix</td>
<td>LV. Permacol™</td>
</tr>
<tr>
<td>• Oasis® Ultra</td>
<td>LVI. PriMatrix™</td>
</tr>
<tr>
<td>• Pelvicol®/PelviSoft®</td>
<td>LVII. PriMatrix™ Dermal Repair Scaffold</td>
</tr>
<tr>
<td>• Permacol™</td>
<td>LVIII. PuraPly™ Wound Matrix (previously FortaDerm™)</td>
</tr>
<tr>
<td>• PriMatrix™</td>
<td>LIX. PuraPly™ AM (Antimicrobial Wound Matrix)</td>
</tr>
<tr>
<td>• PriMatrix™ Dermal Repair Scaffold</td>
<td>LX. Puros® Dermis</td>
</tr>
<tr>
<td>• PuraPly™ Wound Matrix (previously FortaDerm™)</td>
<td>LXI. RegenePro™</td>
</tr>
<tr>
<td>• PuraPly™ AM (Antimicrobial Wound Matrix)</td>
<td>LXII. Repliform®</td>
</tr>
<tr>
<td>• Puros® Dermis</td>
<td>LXX. TenSIX™ Acellular Dermal Matrix</td>
</tr>
<tr>
<td>• RegenePro™</td>
<td>LXXI. TissueMend</td>
</tr>
<tr>
<td>• Repliform®</td>
<td>LXXII. TheraForm™ Standard/Sheet</td>
</tr>
<tr>
<td>• Repriz™</td>
<td>LXXIII. TheraSkin®</td>
</tr>
<tr>
<td>• StrattaGraft®</td>
<td>LXXIV. TransCyte™</td>
</tr>
<tr>
<td>• Strattic e™ (xenograft)</td>
<td>LXXV. TruSkin™</td>
</tr>
<tr>
<td>• Suprathel®</td>
<td>LXXVI. Veritas® Collagen Matrix</td>
</tr>
<tr>
<td>• SurgiMend®</td>
<td>LXXVII. XCM Biologic® Tissue Matrix</td>
</tr>
<tr>
<td>• Talymed®</td>
<td>LXXVIII. XenMatrix™ AB</td>
</tr>
<tr>
<td>• TenoGlide™</td>
<td></td>
</tr>
<tr>
<td>• TenSIX™ Acellular Dermal Matrix</td>
<td></td>
</tr>
<tr>
<td>• TissueMend</td>
<td></td>
</tr>
<tr>
<td>• TheraForm™ Standard/Sheet</td>
<td></td>
</tr>
<tr>
<td>• TheraSkin®</td>
<td></td>
</tr>
<tr>
<td>• TransCyte™</td>
<td></td>
</tr>
<tr>
<td>• TruSkin™</td>
<td></td>
</tr>
<tr>
<td>• Veritas® Collagen Matrix</td>
<td></td>
</tr>
<tr>
<td>• XCM Biologic® Tissue Matrix</td>
<td></td>
</tr>
<tr>
<td>• XenMatrix™ AB</td>
<td></td>
</tr>
</tbody>
</table>