Policy Statement

The use of patient-activated or autoactivated external ambulatory event monitors OR continuous ambulatory monitors that record and store information for periods longer than 48 hours (see Policy Guidelines section) may be considered **medically necessary** as a diagnostic alternative to Holter monitoring in any of the following situations:

- Patients who experience infrequent symptoms (less frequently than every 48 hours) suggestive of cardiac arrhythmias (i.e., palpitations, dizziness, presyncope, or syncope)
- Patients with atrial fibrillation (AF) who have been treated with catheter ablation, and in whom discontinuation of systemic anticoagulation is being considered
- Patients with cryptogenic stroke who have a negative standard workup for AF including a 24-hour Holter monitor (see Policy Guidelines section)

The use of implantable ambulatory event monitors, either patient-activated or autoactivated, may be considered **medically necessary** in either of the following situations:

- In the small subset of patients who experience recurrent symptoms so infrequently that a prior trial of other external ambulatory event monitors has been unsuccessful
- In patients who require long-term monitoring for AF or possible AF (see Policy Guidelines section)

The use of outpatient cardiac telemetry (also known as mobile cardiac outpatient telemetry) as a diagnostic alternative to ambulatory event monitors in patients who experience infrequent symptoms (less frequently than every 48 hours) suggestive of cardiac arrhythmias (i.e., palpitations, dizziness, presyncope, syncope) is considered **investigational**.

Other uses of ambulatory event monitors, including outpatient cardiac telemetry and mobile applications, are considered **investigational**, including but not limited to any of the following:

- Monitoring asymptomatic patients with risk factors for arrhythmia
- Monitoring the effectiveness of antiarrhythmic medications
- Detection of myocardial ischemia by detecting ST-segment changes

Policy Guidelines

The available evidence has suggested that long-term monitoring for AF postablation or after cryptogenic stroke is associated with improved outcomes, but the specific type of monitoring associated with the best outcomes is not well-defined. Trials demonstrating improved outcomes have used either event monitors or implantable monitors. In addition, there are individual patient considerations that may make 1 type of monitor preferable over another.

Therefore, for the evaluation of patients with cryptogenic stroke who have had a negative standard workup for AF including 24-hour Holter monitoring, or for the evaluation of AF after an ablation procedure, the use of long-term monitoring with an external event monitor, OR a continuous ambulatory monitor that records and stores information for periods longer than 48 hours, OR an implantable ambulatory monitor may be considered medically necessary for patients who meet the criteria outlined above.

Types of Devices

There are many devices on the market (see table below). A traditional Holter monitor has several leads (attached with sticky pads) and a device that can be worn with a cord around the neck or on the waist. They are usually used for 24 to 48 hours only, but can be used for longer time periods (1 to 2 weeks). They cannot transmit data remotely.
Patch type devices are small, self-contained, and attach with a single patch (about 2x5 inches) to the chest wall. They are usually water resistant and can be disposable. Once removed, they can be connected to a computer for analysis. They are usually unable to be marked for review when a patient has symptoms, and rely on computer algorithms for analysis.

Loop recorders are small devices that continuously record and when activated due to symptoms can retrieve the 5 minutes prior to that. They are attached to leads or a belt around the chest. Activation can be automatic (based on algorithms) or manual (by the patient).

Symptom event monitors (also known as post-event or non-looping) can be a small hand-held device (put in a pocket) or one worn on the wrist like a watch. They only start recording when activated, and some can't go back from that (but some can). They do not require leads, but the device has to be pressed against the chest to get a recording.

Both Loop and Symptom monitors can send data via telephone. Implantable devices are very small loop recorders that are put into the subcutaneous tissue in the chest wall and can record up to 3 years. They can be monitored remotely, but typically can only show one lead (view).

Mobile Cardiac Outpatient Telemetry (MCOT) monitors continuously analyze the electrocardiogram (ECG) and transmit events real time.

Coding
The following CPT codes are specific to the KardiaMobile device (AliveCor, Inc.) and are considered mobile cardiac outpatient telemetry:

- **0497T**: External patient-activated, physician- or other qualified health care professional-prescribed, electrocardiographic rhythm derived event recorder without 24 hour attended monitoring; in-office connection
- **0498T**: External patient-activated, physician- or other qualified health care professional-prescribed, electrocardiographic rhythm derived event recording without 24 hour attended monitoring; review and interpretation by a physician or other qualified health care professional per 30 days with at least one patient-generated triggered event

Examples of Cardiac Monitoring Devices and Procedural Coding (not all inclusive):
For a complete description of the codes, see the Coding section of the Medical Policy.

<table>
<thead>
<tr>
<th>Cardiac Event Monitoring Device</th>
<th>Product Name</th>
<th>CPT Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Ambulatory Event Monitors</td>
<td>Zio® Event Card (iRhythm Technologies, Inc., San Francisco, CA)</td>
<td>93268, 93270, 93271, 93272</td>
</tr>
<tr>
<td></td>
<td>REKA E100™ (REKA Health, San Diego, CA)</td>
<td>(See *Note below)</td>
</tr>
<tr>
<td>Implantable Ambulatory Event Monitors</td>
<td>Reveal® Insetable Loop Recorder (Medtronic Inc., Minneapolis, MN)</td>
<td>33285, 33286</td>
</tr>
<tr>
<td></td>
<td>Reveal LINQ™ (Medtronic Inc., Minneapolis, MN)</td>
<td></td>
</tr>
<tr>
<td>Mobile Outpatient Cardiac Telemetry (MCOT)</td>
<td>CardioNet Mobile Cardiac Outpatient Telemetry™ (MCOT™) (CardioNet, Inc., Conshohocken, PA)</td>
<td>93228, 93229</td>
</tr>
<tr>
<td></td>
<td>HEARTLink™ II system (Cardiac Telecom Corporation, Greensburg, PA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vital Signs Transmitter (VST™) Monitor (Biowatch Medical, Columbia, SC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifestar Ambulatory Cardiac Telemetry (ACT) system (LifeWatch Technologies Ltd., Rehovot, Israel)</td>
<td>(See **Note below)</td>
</tr>
</tbody>
</table>
Ambulatory Event Monitors and Mobile Cardiac Outpatient Telemetry

<table>
<thead>
<tr>
<th>Cardiac Event Monitoring Device</th>
<th>Product Name</th>
<th>CPT Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Monitoring Devices</td>
<td>• Zo® Patch (iRhythm Technologies, Inc., San Francisco, CA)</td>
<td>0295T</td>
</tr>
<tr>
<td>with Longer Recording Periods</td>
<td>• BodyGuardian® Remote Monitoring System (Preventice®, Inc., Minneapolis, MN)</td>
<td>0296T</td>
</tr>
</tbody>
</table>

Note: CPT code (93268) represents a bundled CPT code including all components of ambulatory event monitoring, including ECG analysis of all the recorded strips during a 30-day period. CPT codes (93270, 93271, and 93272) represent unbundling of CPT code 93268.

Effective January 1, 2019, the following CPT codes will replace CPT codes 33282 and 33284 for an implantable cardiac event recorder:

- **33285**: Insertion, subcutaneous cardiac rhythm monitor, including programming
- **33286**: Removal, subcutaneous cardiac rhythm monitor

The interpretation of the electrocardiograms (ECGs) recorded with ambulatory event monitors may be coded as follows:

- **93268**: External patient and, when performed, auto activated electrocardiographic rhythm derived event recording with symptom-related memory loop with remote download capability up to 30 days, 24-hour attended monitoring; includes transmission, review and interpretation by a physician or other qualified health care professional

The above CPT code represents a bundled CPT code including all components of ambulatory event monitoring, including ECG analysis of all recorded strips during a 30-day period.

Other CPT codes that can be used for ambulatory event monitoring represent unbundling of the 93268 code. For example, CPT code 93270 describes the connection, recording, and disconnection of an external device; CPT code 93271 describes the transmission download and analysis; and 93272 describes the physician review and interpretation of the ECG strips. Ambulatory event monitoring services may supply the monitoring, receipt of transmissions, and analysis of the ECGs (i.e., CPT codes 93271 and 93272), but the provider supplies the hook-up and disconnection of the device (i.e., CPT code 93270). If this is the case, the unbundled codes may be used. It should also be noted that CPT code 93272 (physician review and interpretation) applies to all ECGs transmitted during a 30-day period; therefore, billing for each individual transmitted strip is not warranted.

There are specific CPT codes for mobile outpatient cardiac telemetry:

- **93228**: External mobile cardiovascular telemetry with electrocardiographic recording, concurrent computerized real-time data analysis and greater than 24 hours of accessible ECG data storage (retrievable with query) with ECG triggered and patient selected events transmitted to a remote attended surveillance center for up to 30 days; review and interpretation with report by a physician or other qualified health care professional
- **93229**: External mobile cardiovascular telemetry with electrocardiographic recording, concurrent computerized real-time data analysis and greater than 24 hours of accessible ECG data storage (retrievable with query) with ECG triggered and patient selected events transmitted to a remote attended surveillance center for up to 30 days; technical support for connection and patient instructions for use, attended surveillance, analysis and transmission of daily and emergent data reports as prescribed by a physician or other qualified health care professional

Note: CPT codes (93228 and 93229) can only be reported once per 30 days of service.

There are category III CPT Codes for devices with longer recording capabilities:

- **0295T**: External electrocardiographic recording for more than 48 hours up to 21 days by continuous rhythm recording and storage; includes recording, scanning analysis with report, review and interpretation
Various devices are available for outpatient cardiac rhythm monitoring. These devices differ in the types of monitoring leads used, the duration and continuity of monitoring, the ability to detect arrhythmias without patient intervention, and the mechanism of delivering the information from patient to clinician. These devices may be used to evaluate symptoms suggestive of arrhythmias (e.g., syncope, palpitations), and may be used to detect AF in patients who have undergone cardiac ablation of AF or who have a history of cryptogenic stroke.

Related Policies

- N/A

Benefit Application

Benefit determinations should be based in all cases on the applicable contract language. To the extent there are any conflicts between these guidelines and the contract language, the contract language will control. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

Some state or federal mandates (e.g., Federal Employee Program [FEP]) prohibits plans from denying Food and Drug Administration (FDA)-approved technologies as investigational. In these instances, plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

Regulatory Status

Some of the newer devices are described in the Background section for informational purposes. Because there may be many devices within each category, a comprehensive description of individual devices is beyond the scope of this review. U.S. Food and Drug Administration product codes include: DSH, DXH, DQK, DSI, MXD, MHX.

Rationale

Background

Cardiac Arrhythmias

Cardiac monitoring is routinely used in the inpatient setting to detect acute changes in heart rate or rhythm that may need urgent response. For some conditions, a more prolonged period of monitoring in the ambulatory setting is needed to detect heart rate or rhythm abnormalities that may occur infrequently. These cases may include the diagnosis of arrhythmias in patients with signs and symptoms suggestive of arrhythmias as well as the evaluation of paroxysmal AF.

Cardiac arrhythmias may be suspected because of symptoms suggestive of arrhythmias, including palpitations, dizziness, or syncope or presyncope, or because of abnormal heart rate
or rhythm noted on exam. A full discussion of the differential diagnosis and evaluation of each of these symptoms is beyond the scope of this review, but some general principles on the use of ambulatory monitoring are discussed.

Arrhythmias are an important potential cause of syncope or near syncope, which in some cases may be described as dizziness. An electrocardiogram (ECG) is generally indicated whenever there is suspicion of a cardiac cause of syncope. Some arrhythmic causes will be apparent on ECG. However, for patients in whom an ECG is not diagnostic, longer monitoring may be indicated. The 2009 joint guidelines from the European Society of Cardiology and 3 other medical specialty societies suggested that, in individuals with clinical or ECG features suggesting an arrhythmic syncope, ECG monitoring is indicated; the guidelines also stated that the “duration (and technology) of monitoring should be selected according to the risk and the predicted recurrence rate of syncope.”1 Similarly, guidelines from the National Institute for Health and Care Excellence (2014) on the evaluation of transient loss of consciousness, have recommended the use of an ambulatory ECG in individuals with a suspected arrhythmic cause of syncope. The type and duration of monitoring recommended is based on the individual’s history, particularly the frequency of transient loss of consciousness.2 The Holter monitor is recommended if transient loss of consciousness occurs several times a week. If the frequency of transient loss of consciousness is every one to two weeks, an external event recorder is recommended; and if the frequency is less than once every two weeks, an implantable event recorder is recommended.

Similar to syncope, the evaluation and management of palpitations is patient-specific. In cases where the initial history, examination, and ECG findings are suggestive of an arrhythmia, some form of ambulatory ECG monitoring is indicated. A position paper from the European Heart Rhythm Association (2011) indicated that, for individuals with palpitations of unknown origin who have clinical features suggestive of arrhythmia, referral for specialized evaluation with consideration for ambulatory ECG monitoring is indicated.3

AF Detection

AF is the most common arrhythmia in adults. It may be asymptomatic or be associated with a broad range of symptoms, including lightheadedness, palpitations, dyspnea, and a variety of more nonspecific symptoms (e.g., fatigue, malaise). It is classified as paroxysmal, persistent, or permanent based on symptom duration. Diagnosed AF may be treated with antiarrhythmic medications with the goal of rate or rhythm control. Other treatments include direct cardioversion, catheter-based radiofrequency- or cryo-energy-based ablation, or one of several surgical techniques, depending on the patient's comorbidities and associated symptoms.

Stroke in AF occurs primarily as a result of thromboembolism from the left atrium. The lack of atrial contractions in AF leads to blood stasis in the left atrium, and this low flow state increases the risk of thrombosis. The area of the left atrium with the lowest blood flow in AF, and therefore the highest risk of thrombosis, is the left atrial appendage. Multiple clinical trials have demonstrated that anticoagulation reduces the ischemic stroke risk in patients at moderate- or high-risk of thromboembolic events. Oral anticoagulation in patients with AF reduces the risk of subsequent stroke and was recommended by American Heart Association, American College of Cardiology, and Heart Rhythm Society (2014) joint guidelines on patients with a history of stroke or transient ischemic attack.4

Ambulatory ECG monitoring may play a role in several situations in the detection of AF. In patients who have undergone ablative treatment for AF, if ongoing AF can be excluded with reasonable certainty, including paroxysmal AF which may not be apparent on ECG during an office visit, anticoagulation therapy could potentially be stopped. In some cases where identifying paroxysmal AF is associated with potential changes in management, longer term monitoring may be considered. There are well-defined management changes that occur in patients with AF. However, until relatively recent the specific role of long-term (i.e., >48 hours) monitoring in AF was not well-described.
Patients with cryptogenic stroke are often monitored for the presence of AF because AF is estimated to be the cause of cryptogenic stroke in more than 10% of patients, and AF increases the risk of stroke. Paroxysmal AF confers an elevated risk of stroke, just as persistent and permanent AF do. In individuals with a high-risk of stroke, particularly those with a history of ischemic stroke that is unexplained by other causes, prolonged monitoring to identify paroxysmal AF has been investigated.

Cardiac Rhythm Ambulatory Monitoring Devices

Ambulatory cardiac monitoring with a variety of devices permits the evaluation of cardiac electrical activity over time, in contrast to a static ECG, which only permits the detection of abnormalities in cardiac electrical activity at a single point in time.

A Holter monitor is worn continuously and records cardiac electrical output continuously throughout the recording period. Holter monitors are capable of recording activity for 24 to 72 hours. Traditionally, most Holter monitors have three channels based on three ECG leads. However, some currently available Holter monitors have up to 12 channels. Holter monitors are an accepted intervention in a variety of settings where a short period (24-48 hours) of comprehensive cardiac rhythm assessment is needed (e.g., suspected arrhythmias when symptoms [syncope, palpitations] are occurring daily). These devices are not the focus of this review.

Various classes of devices are available for situations where longer monitoring than can be obtained with a traditional Holter monitor is needed. Because there may be many devices within each category, a comprehensive description of each is beyond our scope. Devices vary in how data are transmitted to the location where the ECG output is interpreted. Data may be transmitted via cellular phone or landline, or by direct download from the device after its return to the monitoring center. The device classes are described in Table 1.

<table>
<thead>
<tr>
<th>Device Class</th>
<th>Description</th>
<th>Device Examples</th>
</tr>
</thead>
</table>
| Noncontinuous devices with memory (event recorder) | Devices not worn continuously but rather activated by patient and applied to skin in the precordial area when symptoms develop | § Zio® Event Card (iRhythm Technologies)
• REKA E100™ (REKA Health) |
| Continuous recording devices with longer recording periods | Devices continuously worn and continuously record via ≥1 cardiac leads and store data longer than traditional Holter (14 d) | § Zio® Patch system (iRhythm Technologies) |
| External memory loop devices (patient- or autotriggered) | Devices continuously worn and store a single channel of ECG data in a refreshed memory. When the device is activated, the ECG is then recorded from the memory loop for the preceding 30-90 s and for next 60 s or so. Devices may be activated by a patient when symptoms occur (patient-triggered) or by an automated algorithm when changes suggestive of an arrhythmia are detected (autotriggered). | § Patient-triggered: Explorer™ Looping Monitor (LifeWatch Services)
• Autotriggered: LifeStar AF Express™ Auto-Detect Looping Monitor (LifeWatch Services)
• Autotriggered or patient-triggered: King of Hearts Express® AF (Card Guard Scientific Survival) |
| Implantable memory loop devices (patient- or autotriggered) | Devices similar in design to external memory loop devices but implanted under the skin in the precordial region | § Autotriggered or patient-triggered: Reveal® XTICM (Medtronic) and Confirm Rx Insertable™ Cardiac Monitor (Abbott)
• Autotriggered: BioMonitor, Biotronik |
| Mobile cardiac outpatient telemetry | Continuously recording or autotriggered memory loop devices that transmit data to a central recording station with real-time monitoring and analysis | § CardioNet MCOT™ (BioTelemetry)
• LifeStar Mobile Cardiac Telemetry (LifeWatch Services)
• SEEQ Mobile Cardiac Telemetry (Medtronic) |

ECG: electrocardiogram.
There are also devices that combine features of multiple classes. For example, the LifeStar ACT Ex Holter (LifeWatch Services) is a 3-channel Holter monitor, but is converted to a mobile cardiac telemetry system if a diagnosis is inconclusive after 24 to 48 hours of monitoring. The BodyGuardian® Heart Remote Monitoring System (Preventice Services) is an external autotriggered memory loop device that can be converted to a real-time monitoring system. The eCardio Verité™ system (eCardio) can switch between a patient-activated event monitor and a continuous telemetry monitor. The Spiderflash-T (LivaNova) is an example of an external autotriggered or patient-triggered loop recorder, but like the Zio® Patch, can record 2 channels for 14 to 40 days.

Literature Review

Evidence reviews assess the clinical evidence to determine whether the use of technology improves the net health outcome. Broadly defined, health outcomes are the length of life, quality of life, and ability to function—incuding benefits and harms. Every clinical condition has specific outcomes that are important to patients and managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens, and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of technology, two domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

This review is structured around three questions: First, in what clinical situations, and with what classes, do ambulatory event monitors improve health outcomes? Second, under what circumstances are implantable ambulatory event monitors associated with improved outcomes? Third, under what circumstances is real-time monitoring associated with improved outcomes?

For some of ambulatory event monitors discussed herein, including those that include real-time monitoring and analysis, the technologies represent an enhancement to existing technology and are intended to improve outcomes compared with event monitors. As such, to demonstrate an improvement in health outcomes, there must be a clinically significant incremental benefit when the additional technology, such as real-time monitoring, is added.

Ambulatory Event Monitors in the Detection of Arrhythmias

The first four sections of the policy focus on clinical situations for which the use of long-term ambulatory event monitors may be associated with improved health outcomes.

- The use of long-term ambulatory event monitors in the diagnosis of cardiac rhythm abnormalities in individuals with signs and/or symptoms of arrhythmias (e.g., dizziness, syncope or near syncope, palpitations) is discussed. Specific arrhythmias may be relatively nonspecific in terms of the symptoms they cause. However, the diagnosis of some arrhythmias has well-defined management implications that are known to improve outcomes, such as the use of an implantable cardioverter defibrillator in individuals with potentially lethal arrhythmias, or antiarrhythmic drugs or pulmonary vein isolation for the treatment of AF. Therefore, identification of an arrhythmia is considered a reasonable endpoint in this case.
The use of long-term ambulatory event monitors for the detection of AF in patients following catheter ablation, for which management (use of anticoagulation therapy) may be changed based on AF detection.

The use of long-term ambulatory event monitors for the detection of AF in patients following cryptogenic stroke, for which management (use of anticoagulation therapy) may be changed based on AF detection.

The use of long-term ambulatory event monitors for the detection of AF in asymptomatic patients.

The last two sections of the policy focus on types of long-term Ambulatory event monitors: implantable ambulatory event monitors and outpatient cardiac telemetry.

Autoactivated External or Continuous Ambulatory Event Monitoring for Patients with Arrhythmia Symptoms

Clinical Context and Test Purpose

The purpose of patient- or autoactivated external ambulatory event monitoring or continuous ambulatory event monitoring in patients who have signs and/or symptoms of arrhythmia is to provide an alternative detection method for AF.

The question addressed in this evidence review is: Does the use of patient- or autoactivated or continuous ambulatory event monitoring for patients with symptoms of arrhythmia improve net health outcome compared with electrocardiogram (ECG) only or 24 to 48 hour Holter monitoring?

The following PICOTS were used to select literature to inform this review.

Patients

The relevant population of interest are individuals with signs or symptoms suggestive of arrhythmia.

Interventions

The intervention being considered is patient- or autoactivated external event monitoring or continuous ambulatory event monitoring. Patient-activated devices are applied to the skin in the precordial area by the patient when symptoms are developing. Continuous event monitoring devices are worn continuously and are recording activity continuously and can store data longer than the Holter monitor.

Alternative AF detection methods that are used include an ECG or 24- to 48-hour Holter monitoring. An ECG provides information on cardiac electrical activity at one point in time. A Holter monitor is worn continuously and records cardiac electrical output continuously throughout the recording period. Holter monitors are capable of recording activity for 24 to 72 hours.

Outcomes

The general outcome of interest is diagnostic yield of the monitors in detecting arrhythmias. To measure incremental benefits of the patient-activated or continuous monitors, direct comparisons with the Holter monitor, or indirect comparisons of the number of detections in the first 48 hours with the number of detections during longer monitoring periods can be made.

Study Selection Criteria

For the evaluation of clinical validity of autoactivated or patient-activated external ambulatory event monitoring for patients with arrhythmia symptoms, studies that met the following criteria were considered:
To assess the clinical validity, studies should report sensitivity, specificity, positive and negative predictive values. Alternatively, studies reporting on diagnostic yield are informative.

To assess the clinical utility, studies should demonstrate how results of the tests impacted treatment decisions and overall management of the patient.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse). Below are studies providing evidence on the diagnostic yield of long-term ambulatory event monitors in symptomatic patients.

Long-Term Ambulatory Event Monitoring in Symptomatic Patients
Newer devices are available that record cardiac rhythms continuously for longer periods of time than traditional Holter monitors. Several studies have evaluated the diagnostic yield of continuous monitoring for more than 48 hours, either directly through comparison with Holter monitoring or indirectly by calculating the proportion of arrhythmias detected in the first 48 hours of monitoring. The diagnostic yield of monitoring with external event monitors depends on the underlying population, the inherent sensitivity of the device, and the duration of monitoring.

Systematic Review
Hoefman et al (2010) published a systematic review on diagnostic tools for detecting cardiac arrhythmias. The literature search, conducted through March 2007, identified 28 studies for inclusion; 12 were single-arm studies and 16 were comparative studies. A meta-analysis was not possible due to the heterogeneity of the study populations and the devices tested. This review included studies of patients presenting with palpitations and compared the yield of remote monitoring for several classes of devices: Holter monitors, patient-activated event recorders, autotriggered event recorders, and implantable loop recorders (ILRs). The yield varied among devices, with autotrigger devices providing the highest range of detection (72%-80%), followed by patient-activated devices (17%-75%), and Holter monitors (33%-35%).

Randomized Controlled Trial
Steinhubl et al (2018) conducted an RCT comparing active home-based cardiac monitoring with the iRhythm Zio® initiated immediately after study recruitment (n=1364) vs active monitoring after 4 months (n=1291). A cohort of patients (n=3476) without monitoring, matched by age, sex, and CHA2DS2-VASc were part of a concurrent observational study. The primary endpoint was newly diagnosed AF at four months among those actively monitored at initiation vs those just beginning the monitoring. The secondary endpoint was newly diagnosed AF at one year among the actively monitored groups combined vs the matched observational controls. For the primary endpoint, at 4 months follow-up, 3.9% of the immediate group and 0.9% of the delayed group had newly diagnosed AF (absolute difference, 3.0%; 95% confidence interval [CI]: 1.8% to 4.1%). For the secondary endpoint, at 1 year follow-up, 6.7 per 100 person-years in the monitored group and 2.6 per 100 person-years in the control group had newly diagnosed AF. At one year, patients who were actively monitored were more likely to initiate anticoagulants, and have more cardiology visits and more primary care visits. There were no differences in emergency room visits or hospitalizations between the monitored and unmonitored groups after one year.

Observational Studies
Farris et al (2019) reviewed the records of patients who had undergone 30-day rhythm monitoring with the LifeWatch device at a single institution. A total of 3.4% of the patients had a
new diagnosis of AF (402 per 1000 patient-years). The most common management response to the new diagnoses was to initiate anticoagulation therapy.

Turakhia et al (2013) evaluated the diagnostic yield of the Zio® Patch. Data from the manufacturer were used to identify 26751 first-time users of the device. The most common clinical indications were palpitations (40.3%), AF (24.3%), and syncope (15.1%). Mean duration of use was 7.6 days, and 95.9% of patients wore the device for more than 48 hours. At least 1 episode of arrhythmia was detected in 16142 (60.3%) patients. The authors compared the detection rate in the first 48 hours with the detection rate over the entire time the device was worn, with 70.1% of patients having their arrhythmia detected within the first 48 hours and 29.9% having their first arrhythmia detected after the first 48 hours. The overall yield was significantly higher when comparing the total monitored period (62.2%) with the first 48 hours (43.9%; p<0.001). These data confirmed previous studies that had shown that while a substantial proportion of arrhythmias in symptomatic patients can be detected within a 48-hour period of monitoring, longer monitoring periods increase the detection rate.

Barrett et al (2014) compared arrhythmia detection rates in 146 patients who underwent simultaneous monitoring with a 24-hour Holter monitor and a 14-day Zio® Patch monitor. Included were patients referred for evaluation of a suspected cardiac arrhythmia at a single institution. For the detection of atrioventricular block, sinus pause, polymorphic ventricular tachycardia, supraventricular tachycardia (SVT), or AF, Holter monitoring detected 61 arrhythmias, while the Zio® Patch detected 96 (p<0.001). Over the monitoring period, the same 60 arrhythmia events were detected by both devices, with 36 only detected by the Zio® Patch and 1 only detected by the Holter. The investigators conducted within-subject comparisons of arrhythmia detection for the 24-hour period during which both devices were worn. Holter monitoring detected 61 arrhythmia events compared with 52 detected by the Zio® Patch (p=0.013). This study also suggested that extended monitoring may increase the diagnostic yield of cardiac monitoring. However, a relatively large number of missed events occurred with the Zio® Patch during the period of simultaneous monitoring, which might have clinical significance if its performance is similar in nonresearch settings.

Solomon et al (2016) evaluated the diagnostic yield for potentially high-risk arrhythmias during 14 days of continuous recording with the Zio® Patch among 122454 patients (122815 recordings) included in a manufacturer registry. Patients included in the series all underwent monitoring with the device from November 2011 to December 2013. Mean wear time was 9.6 days. Overall, there were 22443 (18%) patients with sustained ventricular tachycardia, 1766 (1.4%) patients with sinus pauses of 3 seconds or more, 521 (0.4%) patients with AF pauses of 3 seconds or more, 249 (0.2%) patients with symptomatic pauses, and 1468 (0.4%) with high-grade heart block, which were considered potentially high-risk arrhythmias. After 24 and 48 hours of monitoring, 52.5% and 65.5%, respectively, of potentially high-risk arrhythmias were detected. Seven days of monitoring identified 92.9% of potentially high-risk arrhythmias.

Bolourchi et al (2015) evaluated the diagnostic yield of 14 days of monitoring with the Zio® Patch in a series of 3209 children included in a manufacturer registry. Patient age ranged from 1 month to 17 years. Indications for monitoring included palpitations (n=1138 [35.5%]), syncope (n=450 [14.0%]), unspecified tachycardia (n=291 [9.1%]), paroxysmal SVT (n=264 [8.2%]), and chest pain (n=261 [8.1%]). The overall prevalence of any arrhythmia was 12.1%, with 44.1% of arrhythmias occurring after the first 48 hours of monitoring. Arrhythmias were detected in 10.0% of patients referred for palpitations, 6.7% referred for syncope, 14.8% referred for tachycardia, 22.7% referred for paroxysmal SVT, and 6.5% referred for chest pain.

Single-center studies, summarized in Table 2, have reported on the diagnostic yield and timing of arrhythmia detection in patients monitored with the Zio® Patch for a variety of arrhythmias. These studies generally have reported high rates of arrhythmia detection.
Table 2. Single-Center Studies Reporting on Zio® Patch Yield

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Monitoring Indication</th>
<th>%</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisenberg et al (2014)</td>
<td>14,524 consecutive patients evaluated in an academic EP practice</td>
<td>• Surveillance for unspecified arrhythmia or palpitations</td>
<td>47</td>
<td>• Significant arrhythmias detected in 297 (57%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Known/suspected AF</td>
<td></td>
<td>• 66% had 1st arrhythmia detected within 2 d of monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Syncope</td>
<td>30</td>
<td>• 25% of patient-triggered events associated with clinically significant arrhythmias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bradycardia surveillance</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tachycardia surveillance</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chest pain</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Any arrhythmias detected in the ED</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Schreiber et al (2014)</td>
<td>174 patients with symptoms suggestive of arrhythmia seen in an ED</td>
<td>• Palpitations</td>
<td>44.8</td>
<td>• >1 significant arrhythmia other than chronic AF (≥4 beats VT, paroxysmal AF, ≥4 beats SVT, ≥3-s pause, 2nd-degree Mobitz II or 3rd-degree AV block, or symptomatic bradycardia) detected in 83 (47.7%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Syncope</td>
<td>24.1</td>
<td>• Median time to arrhythmia detection:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unspecified arrhythmias detected in the ED</td>
<td>11.5</td>
<td>o Any arrhythmia: 1.0 d (IQR, 0.2-2.8 d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o VT: 3.1 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o Sinus pause: 4.2 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o Significant heart block: 5.8 d</td>
</tr>
</tbody>
</table>

Comparison of Devices

Eysenck et al (2019) compared 4 external cardiac monitors (Zio® XT Monitor, NUUBO vest, Camation Ambulatory Monitor, and Novacor R Test) with the gold standard of permanent pacemakers in the ability to detect AF. Patients who had permanent pacemakers (n=21) wore each of the external monitors for 2 weeks, in randomized order. A total of 1108 AF episodes were identified by the pacemakers during the study period. Results showed that the Zio®, NUUBO, and Camation monitors were more accurate in AF diagnosis compared with the Novacor R Test, when using the pacemaker detection episodes as the reference standard.

Health Quality Ontario (2017) published an assessment comparing long-term continuous ambulatory event monitors with external cardiac loop recorders for detecting arrhythmias. The assessment included a systematic review of the literature on the effectiveness of both devices for detecting arrhythmias. No studies directly comparing long-term continuous ambulatory event monitors with external loop recorders (ELRs) were found, so indirect comparisons were constructed using 24-hour Holter monitors as the common comparator. Twelve cohort studies were included; seven addressed long-term ambulatory event monitors and five addressed ELRs. Using a meta-regression model to control for variation in device-wearing time and baseline syncpe rate, the estimated difference between the long-term continuous ambulatory event monitors and ELRs in their ability to detect arrhythmias was small (risk difference, 0.01; 95%CI, -0.18 to 0.20). Both devices were more effective than a 24-hour Holter. However, the quality of evidence was evaluated as poor using GRADE criteria.

Some evidence suggests that autotriggered event monitors have an inherently higher yield than patient-activated Ambulatory event monitors. Several studies, including an analysis of a database of 100000 patients, have compared the diagnostic yield of automatic and patient-activated arrhythmia recordings and reported an improved yield with autotriggering devices.

Clinically Useful

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive...
correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs. No RCTs supporting clinical utility were identified.

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. Clinical validity of long-term ambulatory monitoring in patients with arrhythmia symptoms was demonstrated in one RCT and in several large observational studies showing additional AF detection beyond the time frame of when a Holter monitor would be used (24 to 48 hours). When arrhythmia events are detected, management of patients typically involve antiarrhythmic or anticoagulant therapies, which are proven effective in stroke prevention. Therefore, longer term monitoring may improve health outcomes.

Section Summary: Autoactivated or Continuous Ambulatory Monitoring for Patients with Arrhythmia Symptoms
The available evidence on continuously worn cardiac monitors that can store data for longer periods of time than standard Holter monitors indicates that such devices typically detect greater numbers of arrhythmias during extended follow-up compared with 24- or 48-hour Holter monitoring. The RCT and several observational studies indicated that patients who had arrhythmias detected were more likely to receive anticoagulant therapy, antiarrhythmic therapy, and ablation or other cardiac procedures. Because these treatments have been proven effective for stroke prevention, it can be concluded that longer term monitoring of patients with cryptogenic stroke will improve outcomes.

Long-Term Ambulatory Cardiac Monitoring for Patients with AF Following Ablation

Clinical Context and Test Purpose
All patients treated with ablation are given anticoagulation for up to three months postprocedure, with many patients remaining on long-term anticoagulation. In patients with an apparently successful ablation who do not show signs or symptoms of recurrent AF at time periods longer than three months postablation, a decision whether to continue treatment with anticoagulants needs to be made. Studies have demonstrated that late recurrences are not uncommon after ablation and that these recurrent episodes are often asymptomatic. However, the presence of recurrent episodes of AF is a predictor of future thromboembolic events. In a large observational study of 565 patients postablation, Chao et al (2011) found the 2 major predictors of thromboembolism were the CHADS2 score and the presence of recurrent episodes of AF.

The purpose of ambulatory event monitors (either patient-activated or continuous) in patients with AF following ablation is to provide an alternative detection method for recurrent AF in order to accurately assess the need for anticoagulation therapy.

The question addressed in this evidence review is: Does the use of ambulatory event monitors (either patient-activated or continuous) improve the net health outcome of patients with AF following ablation compared with ECG only or 24- to 48-hour Holter monitoring?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest are individuals with AF following ablation.
Interventions
The intervention being considered is patient- or autoactivated external event monitoring or continuous ambulatory event monitoring. Patient-activated devices are applied to the skin in the precordial area by the patient when symptoms are developing. Continuous event monitoring devices are recording activity continuously and can store data longer than the Holter monitor.

Comparators
Alternative surveillance methods that are used include an ECG or 24- to 48-hour Holter monitoring. An ECG provides information on cardiac electrical activity in one point in time. A Holter monitor is worn continuously and records cardiac electrical output continuously throughout the recording period. Holter monitors are capable of recording activity for 24 to 72 hours.

Outcomes
The general outcome of interest is diagnostic yield of the monitors in detecting arrhythmias. If arrhythmias do not recur following ablation, patients may consider discontinuing anticoagulation therapy.

Study Selection Criteria
For the evaluation of clinical validity of autoactivated or patient-activated external ambulatory event monitoring for patients with arrhythmia symptoms, studies that met the following criteria were considered:

- To assess the clinical validity, studies should report sensitivity, specificity, positive and negative predictive values. Alternatively, studies reporting on diagnostic yield are informative.
- To assess the clinical utility, studies should demonstrate how results of the tests impacted treatment decisions and overall management of the patient.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Randomized Controlled Trial
In a prospective, randomized study, Kapa et al (2013) compared ILRs with conventional transtelephonic recorders in the assessment of arrhythmia burden after catheter ablation. Forty-four patients were enrolled and randomized; all patients received the ILR postablation. Six patients were excluded due to requests for device removal or loss to follow-up. During the first 6 months after ablation, all subjects underwent conventional monitoring that consisted of twice daily, 1-minute pulse rate assessments by the patient and 3, 30-day transtelephonic monitoring periods. At 6 months postablation, patients were allocated to the randomization arm (on a 1:1 basis at initial enrollment) of either the ILR (transmission of data every 31 days) or conventional monitoring (twice daily, 1-minute pulse rate assessment, 1 transtelephonic recording for 30 days at month 11). At 6 months postablation, conventional monitoring detected AF in 7 (18%) of 38 patients and the ILR confirmed AF in all of these patients. ILR monitoring also detected AF in an additional 11 (29%) patients. During the subsequent 6-month period, 5 of 18 patients in the conventional monitoring arm refused ongoing monitoring due to discomfort and lifestyle restrictions; of the remaining 13, 5 (38%) had a recurrence of AF. In the ILR group, 5 (25%) of 20 patients had recurrence of AF. During the randomization period, 71% of patients in the ILR group
discontinued their antiarrhythmic drugs compared with 44% in the conventional monitoring group over the randomization period (p=0.04).

Observational Study
Reporting on the prospective Discerning Symptomatic and Asymptomatic Episodes Pre- and Post-Radiofrequency Ablation of AF study, Verma et al (2013) evaluated the incidence of asymptomatic AF episodes for 3 months before and 18 months after ablation in 50 patients implanted with a cardiac monitor. Patients were instructed to keep a standardized diary record of arrhythmia symptoms. Asymptomatic AF recurrences were defined as implantable cardiac monitor (ICM) events lasting two minutes or longer, without a corresponding diary entry. Based on diary reporting of symptoms, 29 (58%) of 50 patients were arrhythmia-free after ablation; based on monitor recordings from intermittent (every 3 month) ECG or Holter monitor, 28 (56%) patients were arrhythmia-free postablation. Patient detection of symptoms underestimates the AF occurrence rate following ablation, with 12% of patients having arrhythmias that were only detected through monitoring.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs. No RCTs were identified. Below is an observational study providing indirect evidence.

Several observational studies have followed patients who stopped anticoagulation after a comprehensive evaluation, which included ambulatory monitoring, that indicated the patient had a low-risk for recurrent episodes. These patients experienced a low subsequent rate of thromboembolic events. In 1 study, Themistoclakis et al (2010) evaluated 3355 patients from 5 clinical centers, of whom 2692 discontinued anticoagulation at 3 to 6 months postablation and 663 continued anticoagulation medication. During a mean follow-up of 28 months, 2 (0.07%) patients who discontinued anticoagulation experienced an ischemic stroke. This rate did not differ significantly from the stroke rate in patients who continued anticoagulation (0.45%). In addition, the adverse event rate of major hemorrhage was lower for patients who discontinued anticoagulation (0.04%) compared with those who continued (2%; p<0.001).

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. An RCT and observational studies have shown that ambulatory monitoring was able to detect AF recurrences that were not detectable based on symptoms alone. No RCTs were identified that compared health outcomes for patients managed with and without ambulatory monitoring. However, there is a large observational study demonstrating that following ablation and a comprehensive evaluation including ambulatory monitoring that indicates a patient is low-risk, patients may consider discontinuing anticoagulation therapy. Patients who discontinued anticoagulation therapy following ablation experienced comparably low rates of stroke compared with patients remaining on anticoagulation therapy, and had statistically lower occurrences of major hemorrhage.

Section Summary: Long-term Ambulatory Monitoring for Patients with AF Following Ablation
Evidence includes an RCT and several observational studies that make a strong indirect argument that long-term monitoring for asymptomatic episodes of AF with ambulatory event monitors will lead to changes in management with long-term anticoagulation. One study reported that patients who discontinued anticoagulation therapy after ambulatory monitoring...
was negative for recurrent episodes, experienced a low rate of stroke similar to patients who remained on anticoagulation therapy. In addition, patients discontinuing anticoagulants experienced fewer major hemorrhages. These changes in management based on ambulatory monitoring are likely to improve outcomes. Because different long-term monitoring devices were used across the studies, the specific type of monitoring associated with the best outcomes is not established.

Long-Term Ambulatory Cardiac Monitoring for Patients with Cryptogenic Stroke

Clinical Context and Test Purpose

Approximately 5% of patients with cryptogenic stroke will have AF diagnosed on ECG and/or telemetry monitoring in the hospital. Patients with a history of cryptogenic stroke who have had AF detected, are typically treated with anticoagulants. Studies comparing the use of continuous telemetry monitoring at the bedside with Holter monitoring for patients hospitalized for stroke or transient ischemic attack (TIA) have reported inconclusive results as to which is the preferred method for AF detection. Longer term ambulatory event monitoring has been shown to identify additional patients with asymptomatic episodes, with rates of detection estimated at 6% to 26% of patients.

The purpose of long-term ambulatory cardiac monitoring in patients who have a history of cryptogenic stroke is to provide an alternative detection method for AF in order to accurately inform the decision to receive anticoagulation therapy.

The question addressed in this evidence review is: Does the use of long term ambulatory cardiac event monitoring improve the net health outcome in patients with cryptogenic stroke compared with standard evaluation for stroke, including ECG and 24-hour Holter monitoring?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest are individuals with a history of cryptogenic stroke with negative standard workup for AF.

Interventions
The intervention being considered is patient- or auto-activated external event monitoring or continuous ambulatory event monitoring. Patient-activated devices are applied to the skin in the precordial area by the patient when symptoms are developing. Continuous event monitoring devices are worn continuously and are recording activity continuously and can store data longer than the Holter monitor.

Comparators
The comparator is standard evaluation for stroke, including ECG or 24- to 48-hour Holter monitoring. An ECG provides information on cardiac electrical activity in one point in time. A Holter monitor is worn continuously and records cardiac electrical output continuously throughout the recording period. Holter monitors are capable of recording activity for 24 to 72 hours.

Outcomes
The general outcome of interest is diagnostic yield of the monitors in detecting arrhythmias. Accurate detection of arrhythmias may be used to inform management decisions concerning anticoagulation therapy.

Study Selection Criteria
For the evaluation of clinical validity of autoactivated or patient-activated external ambulatory event monitoring for patients with arrhythmia symptoms, studies that met the following criteria were considered:
To assess the clinical validity, studies should report sensitivity, specificity, positive and negative predictive values. Alternatively, studies reporting on diagnostic yield are informative.

To assess the clinical utility, studies should demonstrate how results of the tests impacted treatment decisions and overall management of the patient.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse). Below are systematic reviews and RCTs providing evidence for the clinical validity of long-term ambulatory monitoring of patients with cryptogenic stroke.

Systematic Reviews
Sposato et al (2015) conducted a systematic review and meta-analysis of studies assessing rates of newly diagnosed AF after cryptogenic stroke or TIA based on cardiac monitoring, stratified into 4 sequential screening phases: phase 1 (emergency department) consisted of admission ECG; phase 2 (in-hospital) comprised serial ECG, continuous inpatient ECG monitoring, continuous inpatient cardiac telemetry, and in-hospital Holter monitoring; phase 3 (first ambulatory period) consisted of ambulatory Holter monitoring; and phase 4 (second ambulatory period) consisted of mobile cardiac outpatient telemetry (MCOT), external loop recording, and implantable loop recording. In total, 50 studies with 11,658 patients met the inclusion criteria. Studies were mixed in their patient composition: 22 (28%) included only cryptogenic stroke cases, 4 (5%) stratified events into cryptogenic and noncryptogenic, and 53 (67%) included unselected patient populations. The proportion of patients diagnosed with poststroke AF during the ambulatory phases was 10.7% (95% CI, 5.6% to 17.2%) in phase 3, and 16.9% (95% CI, 13.0% to 21.2%) in phase 4. The overall AF detection yield after all phases of sequential cardiac monitoring was 23.7% (95% CI, 17.2% to 31.0%). In phase 4, there were no differences between the proportion of patients diagnosed with poststroke AF by MCOT (15.3%; 95% CI, 5.3% to 29.3%), ELR (16.2%; 95% CI, 0.3% to 24.6%), or ILR (16.9%; 95% CI, 10.3% to 24.9%; p=0.97).

Kishore et al (2014) conducted a systematic review and meta-analysis of prospective observational studies and RCTs that have reported detection rates of newly diagnosed AF in patients with ischemic stroke or TIA who had had any cardiac monitoring for at least 12 hours. Thirty-two studies were selected: 18 studies included patients with ischemic stroke only, 1 study included TIA only, and 13 studies included both ischemic stroke and TIA. Reviewers reported significant study heterogeneity. Among unselected patients (i.e., selected on the basis of stroke pathogenesis, age, or prescreening for AF), the detection rate of any new AF was 6.2% (95% CI, 4.4% to 8.3%); among selected patients, it was 13.4% (95% CI, 9.0% to 18.4%). In cryptogenic strokes, new AF was detected in 15.9% of patients (95% CI, 10.9% to 21.6%). Among selected patients, the AF detection rate during 24-hour Holter monitoring was 10.7% (95% CI, 3.4% to 21.5%), while the detection rate during monitoring beyond 24 hours (including more prolonged Holter monitoring, implantable and nonimplantable loop recording, and MCOT) was 14.7% (95% CI, 10.7% to 19.3%).

The Kishore et al (2014) study and others suggest that longer periods of cardiac monitoring increase the likelihood of AF detection. However, many of these asymptomatic episodes of AF are brief and their relation to the preceding stroke uncertain. The ideal study to evaluate the role of cardiac monitoring in the management of patients with cryptogenic stroke would be trials.
that randomize patients to a strategy involving event monitoring or routine care with evaluation of rates of detection of AF and stroke-related outcomes.

Randomized Controlled Trials

Four RCTs were identified that evaluated ambulatory monitoring in patients with cryptogenic stroke. Two were small pilot trials. One small pilot RCT published by Kamel et al (2013) randomized 40 patients with cryptogenic ischemic stroke or high-risk TIA to usual care or to 21 days of MCOT (Table 3). There were no cases of AF detected in either group (Table 4).

A second small pilot trial published by Higgins et al (2013) randomized 100 patients with ischemic stroke and no history of AF presenting within 7 days of a cryptogenic ischemic stroke to either standard care, which included 12-lead ECG, 24-hour Holter monitoring, and/or echocardiography, at the discretion of the treating practitioner, or to standard care plus cardiac event monitoring with Novacor R-test Evolution 3, an ELR device (Table 3). Sustained AF (recorded for the complete 20-second rhythm strip after event triggering) was detected significantly more often with the ELR than with standard care at 14-day follow-up. The difference did not differ statistically at 90-day follow-up (Table 4).

Sanna et al (2014) reported on results from the Cryptogenic Stroke and underlying times Fibrillation (CRYSTAL AF) trial, an RCT that evaluated whether long-term monitoring with ICMs in patients who had cryptogenic stroke would lead to changes in anticoagulant management and/or improved outcomes (Table 3). The trial randomized 441 patients to continuous monitoring with the Reveal® XTICM or routine care. Eligibility criteria included no known history of AF, cryptogenic stroke, or TIA with infarct, and no mechanism determined after a workup that included 12-lead ECG, 24-hour Holter monitoring, transesophageal echocardiography, CT or magnetic resonance angiography of the head and neck, and hypercoagulability screening (for patients <55 years old). Analysis was intention-to-treat. Of the 441 patients randomized, 416 (94.3%) completed 6-month follow-up, 2 were lost to follow-up, 5 died, and 18 exited the trial before 6 months. Crossover occurred in 12 patients in the ICM group and 6 in the control group. AF was detected in 8.9% of the ICM group compared with 1.4% of the control group (hazard ratio [HR], 6.43; 95% CI, 1.90 to 21.74) (Table 4). Median time from randomization to detection of AF was 41 days (interquartile range, 14-84 days) in the ICM group and 32 days (interquartile range, 2-73 days) in the control group. Most AF episodes in the ICM group were asymptomatic (74%) compared with 33% in the control group. The rate of AF detection was similarly greater in the ICM group at the 12-month follow-up (Table 4). A majority of patients who had AF detected were prescribed anticoagulation therapy. Five (2.4%) of the 208 ICM inserted were removed due to infection or erosion of the device pocket.

Brachmann et al (2016) reported 3-year follow-up results from the CRYSTAL AF trial. At trial closure, 48 subjects had completed 3 years of follow-up (n=24 in each treatment group). By 3 years, the HR for detecting AF for ICM-monitored vs control patients was 8.8 (95% CI, 3.5 to 22.2; p<0.001).

Gladstone et al (2014) reported results from the AF in Patients with Cryptogenic Stroke study, an RCT that compared 30-day autotriggered external loop cardiac event monitors with conventional 24-hour monitors for the detection of AF in patients with cryptogenic stroke (Table 3). Patients were ages 55 years or older, with no known history of AF, and an ischemic stroke or TIA of undetermined cause within the prior 6 months. All patients underwent standard screening for AF with 1 or more ECGs and 1 or more 24-hour Holter monitors. In total, 572 patients were randomized to an ELR (ER910AF Cardiac Event Monitor, Braemar) or to a 24-hour Holter monitor. Among intervention group subjects, 82% completed at least 3 weeks of monitoring. AF was detected in 45 (16.1%) of 280 patients in the intervention group compared with 9 (3.2%) of 277 patients in the control group (risk difference, 12.9 percentage points; 95% CI, 8.0 to 17.6; p<0.001) (Table 4). At 90-day follow-up, patients in the intervention group (18.6%) were more likely to be treated with anticoagulants than those in the control group (11.1%; absolute treatment difference, 7.5 percentage points; 95% CI, 1.6 to 13.3; p=0.01).
Table 3. Summary of RCT Characteristics for Ambulatory Event Monitors for Cryptogenic Stroke

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Active</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higgins et al (2013)</td>
<td>U.K.</td>
<td>2</td>
<td>2010-2011</td>
<td>Transient or persistent symptoms of acute TIA</td>
<td>ELR (50)</td>
<td>Standard (50)</td>
</tr>
<tr>
<td>Gladstone et al (2014)</td>
<td>Canada</td>
<td>16</td>
<td>NR</td>
<td>Cryptogenic ischemic stroke or TIA</td>
<td>ELR (280)</td>
<td>Standard (277)</td>
</tr>
</tbody>
</table>

ELR: external loop recorder; ILR: implantable loop recorder; MCOT: mobile cardiac outpatient telemetry; NR: not reported RCT: randomized controlled trial; TIA: transient ischemic attack.

Table 4. Summary of RCT Results for Ambulatory Event Monitors for Cryptogenic Stroke

<table>
<thead>
<tr>
<th>Study</th>
<th>FU</th>
<th>Ambulatory Event Monitor, %</th>
<th>Standard, %</th>
<th>p</th>
<th>Additional Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kamel et al (2013)</td>
<td>90 d</td>
<td>0</td>
<td>0</td>
<td>NS</td>
<td>• MCOT identified atrial tachycardia in 2 patients (1 incorrectly labeled as AF by telemetry software)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• MCOT identified 2 nonsustained ventricular tachycardia</td>
</tr>
<tr>
<td>Higgins et al (2013)</td>
<td>14 d</td>
<td>18</td>
<td>2</td>
<td><0.05</td>
<td>No difference between groups for recurrent stroke, TIA, or mortality</td>
</tr>
<tr>
<td></td>
<td>90 d</td>
<td>22</td>
<td>8</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Sanna et al (2014) & Brachmann et al (2016)</td>
<td>6 mo</td>
<td>8.9</td>
<td>1.4</td>
<td><0.001</td>
<td>Percent patients on oral anticoagulation therapy significantly higher in ILR group vs standard group</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12.4</td>
<td>2.0</td>
<td><0.001</td>
<td>At 3-y follow-up, recurrent stroke or TIA occurred in 20 patients in ILR group and in 24 in standard group</td>
</tr>
<tr>
<td></td>
<td>3 y</td>
<td>30</td>
<td>3.0</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Gladstone et al (2014)</td>
<td>90 d</td>
<td>16.1</td>
<td>3.2</td>
<td><0.001</td>
<td>Atrial premature beats was identified in a regression model as a potential predictor of AF detection</td>
</tr>
</tbody>
</table>

AF: atrial fibrillation; FU: follow-up; ILR: implantable loop recorder; MCOT: mobile cardiac outpatient telemetry; RCT: randomized controlled trial; TIA: transient ischemic attack.

Nonrandomized Studies
Nonrandomized and noncomparative studies published before the RCTs described above have reported on AF detection rates after cryptogenic stroke and long-term monitoring with various devices, including ILRs, and continuous monitors with longer recording periods, along with a pilot study evaluating the Zio® Patch for AF detection poststroke.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs. No RCTs were identified demonstrating clinical utility.
Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. Clinical validity of long-term ambulatory monitoring in patients with cryptogenic stroke has been demonstrated in systematic reviews and RCTs that showed higher rates of AF detection with long-term monitoring. Because most patients with a history of stroke who have AF detected will be treated with anticoagulation, and because anticoagulation is an effective treatment for stroke prevention, it can be concluded that longer term monitoring of patients with cryptogenic stroke will improve outcomes.

Section Summary: Long-term Ambulatory Cardiac Monitoring for Patients with Cryptogenic Stroke
Randomized studies, including two large RCTs, have demonstrated that long-term monitoring is associated with higher rates of AF detection compared with Holter monitors among patients with cryptogenic stroke. Because most patients with a history of stroke who have AF detected will be treated with anticoagulation, and because anticoagulation is an effective treatment for stroke prevention, it can be concluded that longer term monitoring of patients with cryptogenic stroke will improve outcomes. Because different long-term monitoring devices were used across the studies, the specific type of monitoring associated with the best outcomes is not established.

Long-Term Ambulatory Cardiac Monitoring for Asymptomatic Patients
Clinical Context and Test Purpose
Screening for AF in asymptomatic patients has been proposed to reduce burden of stroke. Evaluating the net benefit of screening for AF in asymptomatic patients requires considering: risk of stroke in absence of screening; incremental benefit of earlier vs later treatment for stroke when AF is detected; and potential harms of overdiagnosis.

Assessing the prevalence of asymptomatic AF is difficult because of the lack of symptoms. Approximately a third of all patients with AF are estimated to be asymptomatic. Studies have suggested that most paroxysmal episodes of AF are asymptomatic. It is uncertain whether patients with paroxysmal AF have a stroke risk comparable to those with persistent or permanent AF; some studies have suggested the risk of stroke is similar, while in a systematic review of 12 studies (total n=99996 patients), Ganesan et al (2016) found that the risks of thromboembolism and all-cause mortality were higher with nonparoxysmal than with paroxysmal AF. The clinical management of symptomatic and asymptomatic AF is the same. Anticoagulation should be initiated if reduction in risk of embolization exceeds complications due to increased bleeding risk.

Screening for AF in asymptomatic patients could be either systematic or targeted to high-risk populations. European guidelines for screening for AF are based on a large cluster RCT (Fitzmaurice et al [2007]; n=14802) of opportunistic pulse taking vs systematic screening with 12 lead ECG or standard care in general practice. This RCT showed that systematic and opportunistic screening detected similar rates of AF and both were superior to standard care. The mechanisms of how and when to screen for AF in unselected populations have not been well-studied.

The purpose of long-term ambulatory cardiac monitoring in patients who are asymptomatic with risk factors for AF is to provide an alternative method of detecting AF.

The question addressed in this evidence review is: Does the use of long-term ambulatory cardiac monitoring in patients who are asymptomatic with risk factors for AF improve net health outcome compared with no additional evaluation or standard of care?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest are asymptomatic individuals with risk factors for AF.
Interventions
The intervention being considered is patient- or autoactivated external event monitoring or continuous ambulatory event monitoring. Patient-activated devices are applied to the skin in the precordial area by the patient when symptoms are developing. Continuous event monitoring devices are worn continuously and are recording activity continuously and can store data longer than the Holter monitor.

Comparators
The comparators are no additional evaluation or standard care. Standard care may include an ECG and/or pulse palpation.

Outcomes
The general outcome of interest is diagnostic yield of the monitors in detecting arrhythmias. Accurate detection of arrhythmias may be used to inform management decisions of the asymptomatic patients.

Study Selection Criteria
For the evaluation of clinical validity of autoactivated or patient-activated external ambulatory event monitoring for patients with arrhythmia symptoms, studies that met the following criteria were considered:

• To assess the clinical validity, studies should report sensitivity, specificity, positive and negative predictive values. Alternatively, studies reporting on diagnostic yield are informative.
• To assess the clinical utility, studies should demonstrate how results of the tests impacted treatment decisions and overall management of the patient.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Randomized Controlled Trials
Halcox et al (2017) conducted an RCT, Remote Heart Rhythm Sampling using the AliveCor heart monitor to screen for AF, which screened patients for AF using the AliveCor Kardia monitor (n=500) or routine care (n=501). Patients were 65 years and older, asymptomatic, with CHA2DS2-VASc scores of 2 or higher. Patients randomized to the Kardia monitor arm undertook twice-weekly, 30-second single-lead iECG recordings and uploaded the information to a secure server. Analysis was performed using an automated software system and forwarded to a physiologist reading service. Abnormal ECG readings were sent to cardiologists. Appropriate care was arranged when arrhythmias were detected. Patients in the routine care arm were followed by their general practitioners. All patients were contacted at 12, 32, and 52 weeks. At 52-week follow-up, 19 patients in the Kardia monitor arm and 5 patients in the routine care arm were diagnosed with AF (HR=3.9; 95% CI, 1.4 to 10.4; p=0.007). There were no significant differences in the rates of mortality; stroke, TIA, or spontaneous embolism; deep vein thromboembolism or pulmonary embolism; or other cardiovascular events between groups.

Observational Study
Turakhia et al (2015) reported on results for a single-center noncomparative study evaluating the feasibility and diagnostic yield of a continuous recording device with longer recording period (Zio® Patch) for patients with risk factors for AF. The study included 75 patients older than age
55 with at least 2 risk factors for AF (coronary disease, heart failure, hypertension, diabetes, or sleep apnea), without a history of prior AF, stroke, TIA, implantable pacemaker or defibrillator, or palpitations or syncope in the prior year. Of the 75 subjects, 32% had a history of significant valvular disease and 9.3% had prior valve replacement. Most subjects (97%) were considered at moderate- to high-risk of stroke (CHA2DS2-VASc scores ≥2). After a mean follow-up of 7.6 days, AF was detected in 4 (5.3%) subjects, all of whom had CHA2DS2-VASc scores of 2 or greater. All patients with AF detected had an initial episode within the first 48 hours of monitoring. Five patients had detected episodes of atrial tachyarrhythmias lasting at least 60 seconds.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs. No studies were identified providing direct evidence.

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility. No studies were identified which demonstrate that detecting AF in asymptomatic individuals will change management of these patients.

Section Summary: Long-term Ambulatory Cardiac Monitoring for Asymptomatic Patients
For the use of ambulatory monitoring in the diagnosis of AF in asymptomatic but higher risk patients, a small noncomparative study demonstrated that monitoring with the Zio® Patch for a mean of eight days resulted in a small percentage (5%) of AF detection. An RCT reported that the Kardia monitor detected more arrhythmias than routine care. However, none of these studies evaluating asymptomatic patients determined whether these measurements changed patient management. The RCT, which followed patients for one year, did not detect a difference in health outcomes between patients monitored using Kardia or routine care. The use of population-based screening for asymptomatic patients is not well-established, and several studies are underway to evaluate population-based screening and may influence the standard of care for AF detection in those without symptoms or a history of stroke or TIA. To determine whether outcomes are improved for ambulatory monitoring for AF in patients without a history of stroke or TIA or treated AF, studies comparing the outcomes for various outpatient diagnostic screening strategies for AF would be needed.

Implantable Loop Recorders for Patients with Symptoms of Arrhythmia
Clinical Context and Test Purpose
This section discusses the use of ILR, with a focus on clinical situations when use of an ILR at the beginning of a diagnostic pathway is indicated. It is expected that a longer period of monitoring with any device category is associated with a higher diagnostic yield. A progression in diagnostics, from an external event monitor to ILR, in cases where longer monitoring is needed is considered appropriate. However, there may be situations where it is sufficiently likely that long-term monitoring will be needed and that an ILR as an initial strategy may be reasonable.

The purpose of ILRs in patients with signs or symptoms suggestive of arrhythmia with infrequent symptoms is to provide an alternative method of arrhythmia detection.

The question addressed in this evidence review is: Does the use of ILRs in individuals with signs or symptoms suggestive of arrhythmia with infrequent symptoms improve net health benefits.
compared with no additional evaluation, standard care, or external Ambulatory event monitors?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest are individuals with signs or symptoms suggestive of arrhythmia with infrequent symptoms.

Interventions
The intervention of interest is an ILR. ILRs store electrical cardiac activity data. When activated (by patient or automatically), the cardiac activity is recorded from the memory loop. ILRs are implanted under the skin in the precordial area.

Comparators
Comparators of interest include no additional evaluation, standard care, or external Ambulatory event monitors. External ambulatory event monitors may be patient- or autoactivated. Patient-activated devices are applied to the skin in the precordial area by the patient when symptoms are developing. Continuous event monitoring devices are worn continuously and are recording activity continuously, storing data longer than the Holter monitor.

Outcomes
The general outcome of interest is diagnostic yield of the ILRs in detecting arrhythmias. Accurate detection of arrhythmias may be used to inform management decisions of the individuals with infrequent symptoms.

Study Selection Criteria
For the evaluation of clinical validity of autoactivated or patient-activated external ambulatory event monitoring for patients with arrhythmia symptoms, studies that met the following criteria were considered:

- To assess the clinical validity, studies should report sensitivity, specificity, positive and negative predictive values. Alternatively, studies reporting on diagnostic yield are informative.
- To assess the clinical utility, studies should demonstrate how results of the tests impacted treatment decisions and overall management of the patient.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Systematic Reviews
Solbiati et al (2017) conducted a systematic review and meta-analysis on the diagnostic yield of ILRs in patients with unexplained syncope. The literature search, conducted through November 2015, identified 49 studies, published between 1998 and 2015, enrolling a total of 4381 patients. The methodologic quality of the studies was assessed using QUADAS and QUADAS-2. The diagnostic yield of ILR, defined as the proportion of patients in which ILR was useful in determining a syncope diagnosis was 44% (95% CI, 40% to 48%; P=80%). Diagnoses included arrhythmic syncope, ventricular arrhythmia, supraventricular arrhythmia, and bradyarrhythmia. Reviewers noted that an important analytic limitation was the considerable heterogeneity.
among studies, partly because definitions of syncope and methods to assess unexplained syncope were inconsistent.

Burkowitz et al (2016) conducted a systematic review and meta-analysis of ILRs in the diagnosis of syncope and the detection of AF. For syncope diagnosis, the review identified three RCTs comparing ILRs with a conventional diagnosis strategy (Holter monitoring). In pooled analysis, an ILR diagnosis strategy was associated with a higher likelihood of the endpoint of diagnostic yield (relative risk, 4.17; 95% CI, 2.57 to 6.77; I²=14%). The RCTs (Da Costa et al [2013], Farwell et al [2004], and Krahn et al [2001]) are described below.

Afzal et al (2015) reported on a systematic review and meta-analysis of studies comparing ILRs with wearable ambulatory event monitors for prolonged outpatient rhythm monitoring after cryptogenic stroke. Reviewers included 16 studies (total n=1770 patients)-3 RCTs and 13 observational studies. For ILR-monitored patients, the median monitoring duration was 365 days (range, 50-569 days), while for wearable device-monitored patients, the median monitoring duration was 14 days (range, 4-30 days). Compared with wearable Ambulatory event monitors, ILRs were associated with significantly higher rates of AF detection (23.3% vs 13.6%; odds ratio, 4.54; 95% CI, 2.92 to 7.06; p<0.05).

Randomized Controlled Trials
Podoleanu et al (2014) reported on results of an open-label RCT comparing 2 strategies for evaluating syncope-an experimental strategy involving the early use of an ILR and a conventional evaluation strategy excluding an ILR (see Table 5). The trial included patients who had a single syncope (if severe and recent) or at least 2 syncopes in the past 12 months. The syncope had to be unexplained at the end of clinical examination and who had a workup with 12-lead ECG, echocardiography, and head-up tilt-test. Patients randomized to ILR received the Reveal® or Reveal® Plus device. After 14 months of follow-up, a definitive cause of syncope was established more frequently in the ILR group than in the standard care group (see Table 6). Arrhythmic causes of syncope in the ILR group included two (5%) cases of atrioventricular block, four (10%) cases of sinus node disease, one (2.5%) case of AF, one (2.5%) case of ventricular fibrillation, and three (8%) other tachycardias. In the conventionally managed group, eight patients had a diagnosis of presumed reflex syncope.

Da Costa et al (2013) compared use of an ILR with a conventional follow-up strategy in 78 patients with a first episode of syncope (Table 5). A significant number of patients had cardiomyopathy (23%), AF (15.4%), and/or bundle branch block (58%) on ECG. Twenty-one (27%) patients had at least 1 arrhythmia detected, with a significant difference in the detection rate for the ILR group compared with the conventional follow-up group (see Table 6).

Giada et al (2007) conducted an RCT assessing 2 diagnostic strategies in 50 patients with infrequent (≤1 episode per month) unexplained palpitations-an ILR strategy (n=26) and a conventional strategy (n=24) including 24-hour Holter, 4 weeks of ambulatory ECG monitoring with an external recorder, and an electrophysiologic study if the 2 prior evaluations were negative) (see Table 5). Prior cardiac evaluation in eligible patients included standard ECG and echocardiography. Rhythm monitoring was considered diagnostic when a symptom-rhythm correlation was demonstrated during spontaneous palpitations that resembled pre-enrollment symptoms. In the conventional strategy group, a diagnosis was made in 5 (21%) subjects, after a mean time to diagnosis of 36 days, based on external ECG monitoring in 2 subjects and electrophysiologic studies in 3 subjects. In the ILR group, a diagnosis was made in 19 subjects after a mean time to diagnosis of 279 days (Table 6).

Farwell et al (2004) reported on an RCT comparing the diagnostic yield of an ILR (Reveal® Plus) with a conventional diagnostic strategy in 201 patients with unexplained syncope (Table 5). Eligible patients were evaluated at a single institution for recurrent syncope and had no definitive diagnosis after a basic initial workup (including 12-lead ECG, Holter monitoring in patients with suspected cardiac syncope, upright cardiac sinus massage, and tilt-table testing).
At last follow-up, more loop recorder patients had an ECG diagnosis than control patients (HR for ECG diagnosis, 8.93; 95% CI, 3.17 to 25.19; p<0.001) (see Table 6). Seven of the loop recorder patients were diagnosed with the device’s autotrigger feature. In the loop recorder group, 34 patients had an ECG-directed therapy initiated (vs 4 in the control group; HR=7.9; 95% CI, 2.8 to 22.3). No device-related adverse events were reported.

An earlier RCT by Krahn et al (2001) compared a conventional monitoring strategy (ELR monitoring for 2-4 weeks, followed by tilt-table and electrophysiologic testing) with at least 1 year of monitoring using an ILR in 60 subjects with unexplained syncope (n=30 per group) (Table 5). Eligible patients had a previous clinical assessment, at least 24 hours of continuous ambulatory monitoring or inpatient telemetry, and a transthoracic echocardiogram. A diagnosis was made in 20% of those in the conventional monitoring arm and in 52% of those in the ILR arm (see Table 6).

Table 5. Summary of RCT Characteristics for ILRs for Arrhythmia

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Active</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krahn et al (2001)56.</td>
<td>England</td>
<td>1</td>
<td>NR</td>
<td>Single or recurent unexplained syncope</td>
<td>ILR (27)</td>
<td>ELR (30)</td>
</tr>
</tbody>
</table>

ELR: external loop recorder; ILR: implantable loop recorder; NR: not reported; NS: not specified; RCT: randomized controlled trial.

Table 6. Summary of RCT Results for ILRs for Arrhythmia

<table>
<thead>
<tr>
<th>Study</th>
<th>FU</th>
<th>Diagnosis Made, n (%)</th>
<th>Additional Findings</th>
</tr>
</thead>
</table>
| Podoleanu et al (2014)58. | 14 mo | 18 (46) 2 (5) <0.001 | • Advanced cardiology tests performed less frequently in ILR group vs standard (p=0.05)
| | | | • No difference in QOL |
| Da Costa et al (2013)54. | 27 moa | 15 (37) 4 (11) 0.02 | Earlier diagnosis in ILR group permitted earlier pacemaker implantation. However, earlier implantation did not improve survival (potentially due to small sample) |
| Giada et al (2007)59. | ≥12 mo | 19 (73) 5 (21) <0.001 | 9 of 19 patients with negative results with standard care crossed over to ILR and 6 of them received a diagnosis |
| Farwell et al (2004)55. | ≥6 mo | 34 (33) 4 (4) <0.001 | • ECG-directed therapy was initiated quicker in the ILR group
| | | | • No difference in syncopal episodes, mortality, or QOL |
| Krahn et al (2001)56. | 12 mo | 14 (52) 6 (20) 0.012 | • Crossover offered to patients with negative results
| | | | • 1 of 6 switching to ELR was diagnosed and 8 of 13 switching to ILR was diagnosed (p=0.07) |

ECG: electrocardiogram; FU: follow-up; ILR: implantable loop recorder; QOL: quality of life; RCT: randomized controlled trial.

Observational Studies
Several observational studies compared the diagnostic yield of ICMs to the Holster monitor. Other observational studies reported management outcomes following diagnoses, such as anticoagulation initiation or cardiac procedures.
Magnusson et al (2018) presented outcomes in a cohort of patients who received ILRs (n=173). Among the patients evaluated for syncope, 39 (27%) were diagnosed with an arrhythmia necessitating a pacemaker and 2 (1%) were diagnosed with an arrhythmia necessitating an implantable cardioverter defibrillator.

Maines et al (2017) described outcomes in 154 consecutive patients receiving the Reveal LINQ™ ILR. After a mean follow-up of 12 months, a diagnosis was made in 99 (64%) patients. In response to the diagnoses, 20 patients initiated anticoagulation therapy, 18 patients had pacemakers implanted, 22 patients underwent electrophysiological study and ablation, and 14 changed antianrhythmic medications.

Ciconte et al (2017) published results from 66 patients with documented AF or symptoms attributable to AF, who were given an implantable monitoring device (BioMonitor). Recordings from the monitoring device were compared with 48-hour Holter monitoring results performed 4 weeks after implantation. Sensitivity and positive predictive value for AF detection of the implantable monitoring device were 95% and 76%, respectively.

Bhangu et al (2016) reported on the diagnostic yield of ILRs in a series of 70 elderly patients with unexplained falls. Cardiac arrhythmias were detected in 49 (70%) of the patients within a mean time of 47 days. A fall in 14 (20%) patients were attributed to the arrhythmia. Ten patients received a cardiac pacemaker.

Nolker et al (2016) published results of the Performance of an Implantable Cardiac Monitor to Detect AF study, in which readings from an ICM (Confirm ICM, St. Jude Medical) were compared with readings from a Holter monitor used for 4 days at least 2 weeks post implant. Patients had either been diagnosed with or had a clinical suspicion of paroxysmal AF (n=90). Due to difficulties with synchronizing the Holter monitor and the implanted device, data from only 79 patients were used in calculations. Patient-level sensitivity, positive predictive value, specificity, and negative predictive value were 100%, 64%, 86%, and 84%, respectively. Episode-level sensitivity, positive predictive value, specificity, and negative predictive value were 95%, 64%, 87%, and 76%, respectively.

Sanders et al (2016) reported on the diagnostic yield for AF with the Reveal LINQ™ device, a miniaturized ILR with a detection algorithm designed to detect AF. This nonrandomized, prospective trial included 151 patients, most of whom (81.5%) were undergoing monitoring for AF ablation or AF management. Compared with Holter-detected AF, the ILR had a diagnostic sensitivity and specificity for AF of 97.4% and 97.0%, respectively.

Ziegler et al (2015) reported on a large (n=1247) set of patients identified from the manufacturer's registry undergoing ILR monitoring for AF detection after a cryptogenic stroke. Over a median follow-up of 182 days, 1521 episodes of AF were detected in 147 patients. Overall, 42 (29%) patients had a single episode of AF and 105 (71%) patients had multiple episodes. The overall detection rate (12.2% at 182 days) was somewhat higher than that reported in the CRYSTAL AF trial.

In a report from a registry of patients who received or were about to receive an ILR (the Reveal®, Plus, DX, or XT device) because of unexplained syncope, Edvardsson et al (2014) described the monitoring yield in 570 patients implanted and followed for at least a year or until diagnosis. Most (97.5%) patients had a standard ECG before implantation of the ILR, 11.8% had prior ELR, and 54.6% had in-hospital ECG monitoring. During the monitoring period, 218 (38%) patients had recurrent syncope. The proportion of specific diagnoses based on the ILR is not reported, but of subjects who had a recurrence, 42.2% had a pacemaker implanted, 4.6% had an implantable cardioverter defibrillator placed, 4.1% received antianrhythmic drug therapy, and 3.7% underwent catheter ablation.
Hindricks et al (2010) evaluated the accuracy of an autotriggered ILR in 247 patients at high-risk for paroxysmal AF. All patients underwent simultaneous 46-hour continuous Holter monitoring, and the authors calculated the performance characteristics of the loop recorder using physician-interpreted Holter monitoring as the criterion standard. The sensitivity of the loop recorder for detecting AF episodes of 2 or more minutes was 88.2%, increasing to 92.1% for episodes of 6 or more minutes. AF was falsely identified by the loop recorder in 19 of 130 patients who did not have AF while on a Holter monitor, for a false-positive rate of 15%. AF burden was accurately measured by the loop recorder, with the mean absolute difference between the loop recorder and Holter monitor of 1.4%.

Hanke et al (2009) compared an autotrigger ILR with 24-hour Holter monitoring done at 3-month intervals in 45 patients who had undergone surgical ablation for AF. After a mean follow-up of 8.3 months, the ILR identified AF in 19 (42%) patients in whom Holter monitoring recorded sinus rhythm.

Safety of ILRs
Mittal et al (2015) reported on safety outcomes related to the use of an ILR, based on data from 2 studies, the Reveal LINQ™ Usability study and the Reveal LINQ™ Registry. The Usability study enrolled 151 patients at 16 European and Australian centers; adverse events were reported for the first month of follow-up. The Registry is a multicenter postmarketing surveillance registry, with a planned enrollment of at least 1200. At the time of analysis, 161 patients had been enrolled. For Registry patients, all adverse events were recorded when they occurred. The device is inserted with a preloaded insertion tool via a small skin incision. In the Usability study, one serious adverse event was recorded (insertion site pain); in the Registry study, two serious adverse events were recorded (one case each of insertion site pain and insertion site infection). The rates of infection and procedure-related serious adverse events in the Usability study were 1.3% and 0.7%, respectively, and 1.6% and 1.6%, respectively, in the Registry study.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs. No RCTs providing evidence for clinical utility were identified.

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. Evidence for clinical validity was provided by several RCTs, which showed that significantly more diagnoses were made with ILRs compared with Holter monitors or other standard care. Many observational studies reported the initiation of treatment (for example, anticoagulation therapy or pacemaker implantation) following the confirmation of diagnoses with the ILR. Because these treatments are known to be effective, it can be concluded that long-term monitoring with ILRs will improve health outcomes.

Section Summary: ILRs for Patients with Symptoms of Arrhythmia
Several RCTs have reported high rates of arrhythmia detection with the use of ILRs compared with external event monitoring or Holter monitoring. These studies support the use of a progression in diagnostics from an external event monitor to ILR when longer monitoring is needed. Some available trials evaluating the detection of AF after ablation procedures or in patients with cryptogenic stroke used ILRs as an initial ambulatory monitoring strategy, after a negative Holter monitor. Many observational studies reported the initiation of treatment (for example, anticoagulation therapy or pacemaker implantation) following the confirmation of
diagnoses with the ILR. Because these treatments are known to be effective, it can be concluded that long-term monitoring with ILRs will improve health outcomes.

Mobile Cardiac Outpatient Telemetry for Patients with Symptoms of Arrhythmia

Clinical Context and Test Purpose

This section addresses whether the addition of real-time MCOT to ambulatory cardiac monitoring is associated with improved outcomes. Two factors must be addressed in evaluating MCOT: (1) the inherent detection capability of the monitoring devices and (2) whether the real-time transmission and interpretation of data confers an incremental health benefit. The proposed addition of real-time monitoring suggests that there may be a subset of individuals who require immediate intervention when an arrhythmia is detected. Because it is not clear which patients comprise that subset, or whether identification of those patients in the outpatient setting leads to improved outcomes (e.g., reduced risks of sudden cardiac death), the evaluation of the second factor requires studies that directly assess outcomes, not just arrhythmia detection rates.

The purpose of outpatient cardiac telemetry in patients with signs or symptoms suggestive of arrhythmia is to provide an alternative method of transmitting electrical cardiac activity data to healthcare providers.

The question addressed in this evidence review is: Does the use of outpatient cardiac telemetry added to ambulatory cardiac monitoring improve net health outcome in patients with signs or symptoms suggestive of arrhythmia compared with ambulatory cardiac event monitoring alone?

The following PICOTS were used to select literature to inform this review.

Patients

The relevant population of interest are patients with signs or symptoms suggestive of arrhythmia.

Interventions

The therapy being considered is MCOT system which transmits ambulatory cardiac monitoring data in real-time to healthcare providers.

Comparators

The comparator of interest is ambulatory cardiac monitoring alone.

Outcomes

The general outcome of interest is the incremental benefit of transmitting the ambulatory cardiac monitoring data in real-time.

Study Selection Criteria

For the evaluation of clinical validity of autoactivated or patient-activated external ambulatory event monitoring for patients with arrhythmia symptoms, studies that met the following criteria were considered:

- To assess the clinical validity, studies should report sensitivity, specificity, positive and negative predictive values. Alternatively, studies reporting on diagnostic yield are informative.
- To assess the clinical utility, studies should demonstrate how results of the tests impacted treatment decisions and overall management of the patient.

Technically Reliable

Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.
Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Randomized Controlled Trials
An RCT by Rothman et al (2007) compared MCOT with standard event monitors (Table 7). This trial involved 305 patients randomized to the LOOP recorder or to MCOT™ (CardioNet) and monitored for up to 30 days. Patients were recruited from 17 centers. Investigators and patients were not blinded to randomization assignment. Monitor strips and diagnoses were reviewed by an electrophysiologist blinded to the monitoring device assignment. Most patients in the LOOP recorder group had a patient-triggered event monitor. Only a subset of patients (n=50) had autotrigger devices, thus precluding comparison between MCOT and autotrigger devices. Analyses were conducted on patients completing at least 25 days of monitoring. The primary endpoint was either confirmation or exclusion of arrhythmic cause of the patient's symptoms. Arrhythmias were classified as either clinically significant or clinically insignificant. The diagnostic endpoint (confirmation or exclusion of arrhythmic cause of symptoms) was significantly different between the 2 groups (Table 8). The difference in rates was primarily due to detection of asymptomatic (not associated with simultaneous symptoms) arrhythmias in the MCOT group, symptoms consisting of rapid AF and/or flutter (14 patients vs 2 patients). These differences were thought to be clinically significant rhythm disturbances and the likely causes of the patients' symptoms. In this trial, median time to diagnosis in the total study population was seven days in the MCOT group and nine days in the LOOP group (Table 8). The trialists did not comment on the clinical impact (changes in management) of these findings in patients for whom the rhythm disturbance did not occur simultaneously with symptoms.

Table 7. Summary of RCT Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Interventions</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rothman (2007)</td>
<td>US</td>
<td>17</td>
<td>NR</td>
<td>Patients with a high clinical suspicion of a malignant arrhythmia, with syncope, presyncope, or severe palpitations, and a nondiagnostic 24-hr Holter test</td>
<td>Mobile automated cardiac outpatient telemetry (CardioNet) n=134</td>
<td>Confirmation of a diagnosis, up to 30 days</td>
</tr>
<tr>
<td>Loop</td>
<td></td>
<td></td>
<td></td>
<td>Patient-activated external looping event monitor n=132</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NR: not reported; RCT: randomized controlled trial.

Table 8. Summary of RCT Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Confirmation or Exclusion of Arrhythmic Cause of Symptoms, n (%)</th>
<th>Confirmation or Exclusion of Arrhythmic Cause of Symptoms in Subgroup with Syncope, n (%)</th>
<th>Confirmation or Exclusion of Arrhythmic Cause of Symptoms in Subgroup Autotriggered Recorder, n (%)</th>
<th>Time to Diagnosis median (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rothman (2007)</td>
<td>263 (88.0)</td>
<td>113 (88.7)</td>
<td>98 (75.4)</td>
<td>50</td>
</tr>
<tr>
<td>LOOP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.008</td>
<td>0.008</td>
<td>0.002</td>
<td>NR</td>
</tr>
</tbody>
</table>

CI: confidence interval; LOOP: looping event monitor; MCOT: mobile cardiac outpatient telemetry; NR: not reported; RCT: randomized controlled trial.

Observational Studies

Arrhythmia Detection
Derkac et al (2017) retrospectively reviewed the BioTelemetry database of patients receiving ambulatory ECG monitoring, selecting patients prescribed MCOT (n=69977) and patients
prescribed AT-LER, an autotrigger looping event recorder (n=8513). Patients were diagnosed
dlating with palpitations, syncope and collapse, AF, tachycardia, and/or TIA. Patients given the MCOT
were monitored for an average of 20 days and patients given the AT-LER were monitored an
average of 27 days. The diagnostic yield using MCOT was significantly higher than that using AT-
LER for several events: 128% higher for AF, 54% higher for bradycardia, 17% higher for ventricular
pause, 80% higher for SVT, and 222% higher for ventricular tachycardia. Mean time to diagnosis
for each asymptomatic arrhythmia was shorter for patients monitored by MCOT than by AT-LER.
There was no discussion of management changes or health outcomes based on monitoring
results.

Kadish et al (2010) evaluated the frequency with which events transmitted by MCOT
represented emergent arrhythmias, thereby indirectly assessing the clinical utility of real-time
outpatient monitoring. Medical records from 26438 patients who had undergone MCOT during
a 9-month period from a single service provider were retrospectively examined. During a mean
monitoring period of 21 days, 21% (5459) had an arrhythmic event requiring physician
notification. Of these, 1% (260) had an event that could be considered potentially emergent.
These potentially emergent events included 120 patients with wide-complex tachycardia, 100
patients with sinus pauses 6 seconds or longer, and 42 with sustained bradycardia at less than 30
beats per minute.

A number of uncontrolled case series have reported on arrhythmia detection rates of MCOT.74-77.
One study (Joshi et al [2005]) described the outcomes of a consecutive case series of 100
patients.74 Included patients had the following symptoms: palpitations (47%), dizziness (24%), or
syncope (19%). Patients being evaluated for the efficacy of drug treatment (25%) were also
included. Clinically significant arrhythmias were detected in 51% of patients, but half of these
patients were asymptomatic. The authors commented that the automatic detection resulted in
an increased diagnostic yield, but there was no discussion of its unique features (i.e., the real-
time analysis, transmission, and notification of arrhythmia).

AF Detection
In the largest study evaluating the diagnostic yield of MCOT for AF, Favilla et al (2015) evaluated
a retrospective cohort of 227 patients with cryptogenic stroke or TIA who underwent 28 days of
monitoring with MCOT.78 AF was detected in 14% (31/227) of patients, of whom 3 reported
symptoms at the time of AF. Oral anticoagulation was initiated in 26 (84%) patients diagnosed
with AF. Of the remaining 5 (16%) not on anticoagulation therapy, 1 had a prior history of
intestinal bleeding, 3 were unwilling to accept the risk of bleeding related to the use of
anticoagulants, and 1 failed to follow-up.

Miller et al (2013) retrospectively analyzed paroxysmal AF detection rates among 156 patients
evaluated with MCOT within 6 months of a cryptogenic stroke or TIA.30 Over a median 21-day
period of MCOT monitoring (range, 1-30 days), AF was detected in 17.3% of patients. Mean time
to first occurrence of AF was 9 days (range, 1-21 days).

Tayal et al (2008) retrospectively analyzed patients with cryptogenic stroke who had not been
diagnosed with AF by standard monitoring.77 In this study, 13 (23%) of 56 patients with
cryptogenic stroke had AF detected by MCOT. Twenty-seven asymptomatic AF episodes were
detected in the 13 patients; 23 of them were less than 30 seconds in duration. In contrast, Kalani
et al (2015) reported a diagnostic yield for AF of 4.7% (95% CI, 1.5% to 11.9%) in a series of 85
patients with cryptogenic stroke.79 In this series, 82.4% of patients had completed
transesophageal echocardiography, cardiac magnetic resonance imaging, or both, with
negative results. Three devices were used and described as MCOT devices: 34% received
LifeStar ACTambulatory cardiac telemetry, 41% received the LifeStar AF Express autodetect
looping monitor, and 25% received the Cardiomedix cardiac event monitor. While the authors
reported that there was a system in place to transmit the data for review, it is unclear whether
data were sent in "real-time."
Narasimha et al (2018) published results of a study in which 33 patients wore both an ELR and a Kardia monitor to screen for AF during a period of 14 to 30 days. Patients were 18 years or older, had palpitations less often than daily but more frequently than several times per month, and prior nondiagnostic ECGs. Exclusion criteria included myocardial infarction within the last three months, history of ventricular tachycardia/fibrillation, unstable angina, and syncope. Study personnel viewed the Kardia monitor recordings once daily and a physician was contacted if a serious or sustained arrhythmia was detected. Patients were also monitored by the ELR company, which notified a physician on call when necessary. All 33 patients had a diagnosis using the Kardia monitor and 24 patients received a diagnosis using the ELR (p=0.001).

Dorr et al (2019) compared the diagnostic accuracy of a smartwatch system with cardiologists' interpretation of an ECG in the diagnostic accuracy to detect AF. The smartwatch system uses an algorithm to enable rhythm analysis of the photoplethysmographic signals. The population consisted of 508 hospitalized patients who had interpretable ECG and photoplethysmographic recordings. The photoplethysmographic algorithm compared with the cardiologists' diagnoses had a sensitivity of 94% and a specificity of 98%. A limitation of the study was that many of the recordings were excluded due to insufficient signal quality (148 of 672). The investigators concluded that detection of AF is feasible with a smartwatch, though signal quality issues need to be resolved and a broader population needs to be tested.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Direct Evidence
Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from RCTs. No RCTs were identified that evaluated the management of patients with and without mobile cardiac monitoring.

Chain of Evidence
Indirect evidence on clinical utility rests on clinical validity. Evidence for clinical validity consists of one RCT and several observational studies. The RCT reported a larger proportion of patients receiving a diagnosis in the MCOT group compared with the LOOP group, though time to diagnosis was not significantly different. In addition, no studies demonstrated an incremental benefit of the real-time transmission and interpretation of data compared with the usual monitoring timeline.

Section Summary: MCOT for Patients with Symptoms of Arrhythmia
The available evidence has suggested that MCOT is likely to be at least as good at detecting arrhythmias as ambulatory event monitoring. Compared with ambulatory event monitoring, MCOT is associated with the theoretical advantage of real-time monitoring, permitting for emergent intervention for potentially life-threatening arrhythmias. One study reported that 1% of arrhythmic events detected on MCOT during a mean monitoring period of 21 days per patient could be considered potentially emergent. However, no studies were identified that addressed whether the use of MCOT is associated with differences in the management of or outcomes after these potentially emergent events. The addition of real-time monitoring to outpatient ambulatory monitoring is considered an enhancement to existing technology. Currently, the evidence does not demonstrate a clinically significant incremental benefit for MCOT.

Summary of Evidence
Ambulatory Event Monitoring
For individuals who have signs and/or symptoms suggestive of arrhythmia(s) who receive patient- or auto activated external ambulatory event monitoring or continuous ambulatory
monitoring storing information for more than 48 hours, the evidence includes 1 RCT and prospective and retrospective studies reporting on the diagnostic yield. The relevant outcomes are overall survival (OS) and morbid events. The RCT and the observational studies have consistently shown that continuous monitoring with longer recording periods detects more arrhythmias than 24- or 48-hour Holter monitoring. Particularly for patients who, without the more prolonged monitoring, would only undergo shorter term monitoring, the diagnostic yield is likely to identify arrhythmias that may have therapeutic implications. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have AF following ablation who receive long-term ambulatory cardiac monitoring, the evidence includes one RCT comparing ambulatory event monitoring with standard care and several observational studies. The relevant outcomes are OS, morbid events, medication use, and treatment-related morbidity. The RCT evaluating a long-term monitoring strategy after catheter ablation for AF reported significantly higher rates of AF detection. The available evidence has suggested that long-term monitoring for AF postablation is associated with improved outcomes. However, the specific type of monitoring associated with the best outcomes is not established, because different long-term monitoring devices were used across the studies. Trials demonstrating improved outcomes have used event monitors or implantable monitors. In addition, there are individual patient considerations that may make one type of monitor preferable over another. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have cryptogenic stroke with a negative standard workup for AF who receive long-term ambulatory cardiac monitoring, the evidence includes systematic reviews of RCTs comparing ambulatory event monitoring with standard care. The relevant outcomes are OS, morbid events, medication use, and treatment-related morbidity. RCTs evaluating a long-term AF monitoring strategy poststroke have reported significantly higher rates of AF detection with longer term ambulatory monitoring. The available evidence has suggested that long-term monitoring for AF after cryptogenic stroke is associated with improved outcomes, but the specific type of monitoring associated with the best outcomes is not established, because different long-term monitoring devices were used across the studies. Trials demonstrating improved outcomes have used event monitors or implantable monitors. In addition, there are individual patient considerations that may make one type of monitor preferable over another. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic with risk factors for AF who receive long-term ambulatory cardiac monitoring, the evidence includes an RCT and a nonrandomized study. The relevant outcomes are OS, morbid events, medication use, and treatment-related morbidity. The studies showed use of the ambulatory monitors would result in higher AF detection compared with routine care. However, the RCT followed patients for one year and did not detect a difference in stroke occurrence between the monitored group and the standard of care group. The other studies did not discuss changes in patient management or health outcomes based on monitoring. Studies reporting on improved outcomes with longer follow-up are needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

Implantable Loop Recording

For individuals who have signs and/or symptoms suggestive of arrhythmia with infrequent symptoms who receive patient- or autoactivated implantable ambulatory event monitoring, the evidence includes RCTs comparing ILRs with shorter term monitoring, usually 24- to 48-hour Holter monitoring, and many observational studies. The relevant outcomes are OS, morbid events, medication use, and treatment-related morbidity. Studies assessing prolonged ILRs in patients have reported high rates of arrhythmia detection compared with shorter external event or Holter monitoring. These studies have supported use of a progression in diagnostics from an external event monitor to implantable loop recorder when longer monitoring is needed. The evidence is
sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Outpatient Cardiac Telemetry

For individuals who have signs and/or symptoms suggestive of arrhythmia who receive outpatient cardiac telemetry, the evidence includes an RCT and nonrandomized studies evaluating rates of arrhythmia detection using outpatient cardiac telemetry. The relevant outcomes are OS and morbid events. The available evidence has suggested that outpatient cardiac telemetry is at least as good at detecting arrhythmias as ambulatory event monitoring. However, studies have not evaluated whether the real-time monitoring feature of outpatient cardiac telemetry leads to reduced cardiac events and mortality. The evidence is insufficient to determine the effects of the technology on health outcomes.

Supplemental Information

Clinical Input From Physician Specialty Societies and Academic Medical Centers

While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

2014 Input

In response to requests from Blue Cross Blue Shield Association, input was received from 3 physician specialty societies and 4 academic medical centers (3 reviews) in 2014. Input was obtained to provide information on mobile cardiac outpatient telemetry and new devices. There was no consensus whether mobile cardiac outpatient telemetry is medically necessary. While reviewers agreed that mobile cardiac outpatient telemetry is comparable to event monitors for arrhythmia detection, they did not agree on whether the real-time monitoring provides incremental benefit over external event monitors or is associated with improved health outcomes compared with external event monitors. There was consensus on the medical necessity of externally worn event monitors with longer continuous recording periods as an alternative to Holter monitors or event monitors. For implantable memory loop devices that are smaller than older-generation devices, there was consensus that these devices improve the likelihood of obtaining clinically useful information due to improved ease of use, but there was no consensus that such devices improve clinical outcomes and are medically necessary.

2009 Input

In response to requests from Blue Cross Blue Shield Association, input was received from 1 physician specialty society and 4 academic medical centers (5 reviews) in 2009. There were differences among reviewers on outpatient cardiac telemetry, with some reviewers concluding it had a role in certain subsets of patients (e.g., in those with sporadic AF). Other reviewers commented that the value of this technology should be considered in both providing a diagnosis and in making treatment decisions. At times, excluding arrhythmia as a cause of a patient’s symptoms is an important finding.

Practice Guidelines and Position Statements

International Society for Holter and Noninvasive Electrocardiology et al

The International Society for Holter and Noninvasive Electrocardiology and the Heart Rhythm Society (HRS; 2017) issued a consensus statement on ambulatory electrocardiogram and external monitoring and telemetry. Below are two summary tables from the consensus statement, detailing advantages and limitations of ambulatory electrocardiogram techniques (see Table 9) and recommendations for the devices that are relevant to this evidence review (see Table 10).
Table 9. Advantages and Limitations of Ambulatory ECG Techniques, International Society for Holter and Noninvasive Electrocardiology/HRS

<table>
<thead>
<tr>
<th>ECG Monitoring Technique</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holter monitoring</td>
<td>• Records and documents continuous 3- to 32-lead ECG signal simultaneously with biologic signals during normal daily activities • Physicians familiar with analysis software and scanning services</td>
<td>• Frequent noncompliance with symptom logs and event markers • Frequent electrode detachments • Signal quality issues due to skin adherence, tangled wires, dermatitis • Absence of real-time data analysis • Poor patient acceptance of electrodes</td>
</tr>
<tr>
<td>Patch ECG monitors</td>
<td>• Long-term recording of ≥14 d • Excellent patient acceptance</td>
<td>• Limited ECG from closely spaced electrodes, lacking localization of arrhythmia origin • Inconsistent ECG quality due to body type variations</td>
</tr>
<tr>
<td>External loop recorders</td>
<td>• Records only selected ECG segments marked as events either automatically or manually by patient • Immediate alarm generation on event detection</td>
<td>• Single-lead ECG, lacking localization of arrhythmia origin • Cannot continuously document cardiac rhythm • Requires patient to wear electrodes continuously</td>
</tr>
<tr>
<td>Event recorders</td>
<td>• Records only selected ECG segments after an event is detected by patient • Immediate alarm generation at event detected by patient • Well-tolerated by patient</td>
<td>• Single-lead ECG, lacking localization of arrhythmia origin • Cannot continuously document cardiac rhythm • Diagnostic yield dependent on patient ability to recognize correct symptom</td>
</tr>
<tr>
<td>Mobile cardiac telemetry</td>
<td>• Multilead, so higher sensitivity and specificity of arrhythmia detection • Streams data continuously; can be programmed to autodetect and autosend events at prescribed time intervals • Immediate alarm generation on event without patient interaction</td>
<td>• Long-term patient acceptance is reduced due to requirement of daily electrode changes</td>
</tr>
</tbody>
</table>

ECG: electrocardiogram.

Table 10. Select Recommendations for Ambulatory ECG and External Monitoring or Telemetry, International Society for Holter and Noninvasive Electrocardiology/HRS

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>COR<sup>a</sup></th>
<th>LOE<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection of ambulatory ECG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Holter monitoring when symptomatic events anticipated within 48 h</td>
<td>I</td>
<td>B-NR</td>
</tr>
<tr>
<td>• Extended ambulatory ECG (15-30 d) when symptomatic events are not daily or are uncertain</td>
<td>I</td>
<td>B-R</td>
</tr>
<tr>
<td>• Continuous monitoring (1-14 d) to quantify arrhythmia burden and patterns</td>
<td>I</td>
<td>B-NR</td>
</tr>
</tbody>
</table>

Specific conditions for use of ambulatory ECG

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>COR<sup>a</sup></th>
<th>LOE<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Unexplained syncope, when tachycardia suspected</td>
<td>I</td>
<td>B-R</td>
</tr>
<tr>
<td>• Unexplained palpitation</td>
<td>I</td>
<td>B-R</td>
</tr>
<tr>
<td>• Detection of AF, triggering arrhythmias, and postconversion pauses</td>
<td>IIa</td>
<td>B-NR</td>
</tr>
<tr>
<td>• Cryptogenic stroke, to detect undiagnosed AF</td>
<td>I</td>
<td>B-R</td>
</tr>
</tbody>
</table>

ECG: electrocardiogram; COR: class of recommendation; LOE: level of evidence.

^a COR definitions: I: strong recommendation; IIa: benefit probably exceeds risk.

^b LOE definitions: B-NR: moderate level based on well-executed nonrandomized studies; B-R: moderate level based on randomized trials.

American Heart Association, American College of Cardiology, and Heart Rhythm Society

The American College of Cardiology, the American Heart Association, and HRS (2019) updated guidelines initially issued in 2014⁴ on the management of patients with AF.⁸³ These guidelines
recommended the use of Holter or event monitoring if the diagnosis of the type of arrhythmia is in question, or as a means of evaluating rate control.

The same associations (2017) collaborated on guidelines on the evaluation and management of patients with syncope\(^{84}\) and patients with ventricular arrhythmias\(^{85}\). Cardiac monitoring recommendations are summarized below in Tables 11 and 12.

Table 11. Cardiac Monitoring Recommendations, AHA/ACC/HRS

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>COR(^a)</th>
<th>LOE(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice of a specific cardiac monitor should be determined on the basis of frequency and nature of syncope events.(^{84})</td>
<td>I</td>
<td>C-EO</td>
</tr>
<tr>
<td>To evaluate selected ambulatory patients with syncope of suspected arrhythmic etiology, the following external cardiac monitoring approaches can be useful: Holter monitor, transtelephonic monitor, external loop recorder, patch recorder, and mobile cardiac outpatient telemetry.(^{84})</td>
<td>Ila</td>
<td>B-NR</td>
</tr>
<tr>
<td>To evaluate selected ambulatory patients with syncope of suspected arrhythmic etiology, an implantable cardiac monitor can be useful.(^{84})</td>
<td>Ila</td>
<td>B-R</td>
</tr>
<tr>
<td>Ambulatory electrocardiographic monitoring is useful to evaluate whether symptoms including palpitations, presyncope, or syncope, are caused by VA(^{85}).</td>
<td>I</td>
<td>B-NR</td>
</tr>
<tr>
<td>In patients with cryptogenic stroke (i.e., stroke of unknown cause), in whom external ambulatory monitoring is inconclusive, implantation of a cardiac monitor (loop recorder) is reasonable to optimize detection of silent AF.(^{83})</td>
<td>Ila</td>
<td>B-R</td>
</tr>
</tbody>
</table>

ACC: American College of Cardiology; AHA: American Heart Association; COR: class of recommendation; HRS: Heart Rhythm Society; LOE: level of evidence; VA: ventricular arrhythmia.

\(^{a}\) COR definitions: I: strong recommendation; IIa: benefit probably exceeds risk.

\(^{b}\) LOE definitions: B-NR: moderate level based on well-executed nonrandomized studies; B-R: moderate level based on randomized trials; C-EO: consensus of expert opinion based on clinical experience.

Table 12. Patient Selection Recommendations by Cardiac Rhythm Monitor, AHA/ACC/HRS

<table>
<thead>
<tr>
<th>Type of Monitor</th>
<th>Patient Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holter monitor</td>
<td>Symptoms frequent enough to be detected within 24 to 72 h</td>
</tr>
<tr>
<td>Patient-activated event monitor</td>
<td>• Frequent spontaneous symptoms likely within 2 to 6 wk</td>
</tr>
<tr>
<td></td>
<td>• Limited use when syncope associated with sudden incapacitation</td>
</tr>
<tr>
<td>External loop recorder (patient or auto-triggered)</td>
<td>Frequent spontaneous symptoms likely to occur within 2 to 6 wk</td>
</tr>
<tr>
<td>External patch recorder</td>
<td>• Alternative to external loop recorder</td>
</tr>
<tr>
<td></td>
<td>• Leadless, so more comfortable, resulting in improved compliance</td>
</tr>
<tr>
<td></td>
<td>• Offers only 1-lead recording</td>
</tr>
<tr>
<td>Mobile cardiac outpatient telemetry</td>
<td>• Spontaneous symptoms related to syncope and rhythm correlation</td>
</tr>
<tr>
<td>Implantable cardiac monitor</td>
<td>• High-risk patients needing real-time monitoring</td>
</tr>
</tbody>
</table>

ACC: American College of Cardiology; AHA: American Heart Association; HRS: Heart Rhythm Society.

Heart Rhythm Society et al

A consensus document on catheter and surgical ablation for AF was published in 2012 by HRS, the European Heart Rhythm Association, and the European Cardiac Arrhythmia Society\(^{86}\), and updated in 2017.\(^{87}\) This document did not contain formal practice guidelines, but provided general recommendations based on literature review and expert consensus. Use of ambulatory event monitors postablation was addressed in two sections of the document. First, in the section discussing use of anticoagulation following ablation, the following statement was made:

“Patients in whom discontinuation of systematic anticoagulation is being considered based on patient values and preferences should consider undergoing continuous or frequent ECG [electrocardiogram] monitoring to screen for AF recurrence.”

In the section on postoperative rhythm monitoring of patients who are postablation, the following statements were made:

“The success of AF ablation is based in large part on freedom from AF recurrence based on ECG monitoring. Arrhythmia monitoring can be performed with the use of noncontinuous or continuous ECG monitoring tools.”
The statement referenced a table of ambulatory cardiac monitoring devices (Holter, patch, external loop, implantable loop, wearable multisensors, Smartphone monitors), describing unique features of each. The table did not evaluate the safety or efficacy of these devices, nor recommend one over another.

European Heart Rhythm Association

The European Heart Rhythm Association (2009) published guidelines on the use of diagnostic implantable and external loop recorders. For the indications that the Association considered established at the time of publication, the guidelines made the following statements about indications for implantable and external recorders (see Table 13).

<table>
<thead>
<tr>
<th>Table 13. Guidelines on Use of Diagnostic ILRs and ELRs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendation</td>
</tr>
<tr>
<td>"ILR [implantable loop recorder] is indicated:</td>
</tr>
<tr>
<td>• "In an early phase of evaluation of patients with recurrent syncope of uncertain origin who have:</td>
</tr>
<tr>
<td>• "absence of high-risk criteria that require immediate hospitalization or intensive evaluation..."; and</td>
</tr>
<tr>
<td>• "a likely recurrence within battery longevity of the device."</td>
</tr>
<tr>
<td>"ILR may be indicated to assess the contribution of bradycardia before embarking on cardiac pacing in patients with suspected or certain neurally mediated syncope presenting with frequent or traumatic syncopal episodes."</td>
</tr>
<tr>
<td>"ILRs may be indicated in selected cases with severe infrequent symptoms when ELRs and other ECG monitoring systems fail to document the underlying cause."</td>
</tr>
<tr>
<td>"ELRs [external loop recorder] may be indicated in patients with recurrent (pre)syncope who have:</td>
</tr>
<tr>
<td>• "intersymptom interval of ≤4 weeks, and</td>
</tr>
<tr>
<td>• "suspicion of arrhythmic origin and</td>
</tr>
<tr>
<td>• "absence of high-risk criteria that require immediate hospitalization or intensive evaluation..."</td>
</tr>
</tbody>
</table>

COR: class of recommendations; **ECG:** electrocardiogram; **ELR:** external loop recorder; **ILR:** implantable loop recorder; **LOE:** level of evidence.

American Academy of Neurology

The American Academy of Neurology updated its guidelines on the prevention of stroke in patients with nonvalvular AF (NVAF). These guidelines made the following recommendations on the identification of patients with occult NVAF:

A.1 "Clinicians might obtain outpatient cardiac rhythm studies in patients with cryptogenic stroke without known NVAF, to identify patients with occult NVAF (Level C).

A.2 Clinicians might obtain cardiac rhythm studies for prolonged periods (e.g., for 1 or more weeks) instead of shorter periods (e.g., 24 hours) in patients with cryptogenic stroke without known NVAF, to increase the yield of identification of patients with occult NVAF (Level C)."

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

The Centers for Medicare & Medicaid Services (2004) implemented a national coverage determination for electrocardiographic services. This national coverage determination includes descriptions of the Holter monitor and event recorders (both external loop recorders and implantable loop recorders). Ambulatory cardiac monitors are covered when there is documentation of medical necessity. Indications for use include detection of symptomatic...
transient arrhythmias and determination of a rhythmic drug therapy (to either initiate, revise, or discontinue the therapy).

Ongoing and Unpublished Clinical Trials

Some currently unpublished trials that might influence this review are listed in Table 14.

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td>Home-Based Screening for Early Detection of AF in Primary Care Patients Aged 75 Years and Older (SCREEN-AF)</td>
<td>822</td>
<td>Dec 2019</td>
</tr>
<tr>
<td></td>
<td>Remote Cardiac Monitoring of Higher-Risk Emergency Department Syncope Patients after Discharge (REMOSYNC)</td>
<td>600</td>
<td>May 2019</td>
</tr>
<tr>
<td></td>
<td>Impact of an Intensive Monitoring Strategy in Symptomatic Patients with Suspected Arrhythmia (IMPACT)</td>
<td>150</td>
<td>Jul 2019</td>
</tr>
<tr>
<td></td>
<td>Post-Emolic Rhythm Detection With Implantable Versus External Monitoring (PERDIEM)</td>
<td>300</td>
<td>Dec 2019</td>
</tr>
<tr>
<td></td>
<td>Daily Ambulatory Remote Monitoring System vs Conventional Therapy for the Post-Discharge Management of Acute Decompensated Heart Failure</td>
<td>876</td>
<td>Jul 2020</td>
</tr>
<tr>
<td></td>
<td>Detection of AF After Cardiac Surgery (SEARCH-AF)</td>
<td>396</td>
<td>Sep 2020</td>
</tr>
<tr>
<td></td>
<td>Detection of Silent AF After Ischemic Stroke (SAFFO)</td>
<td>424</td>
<td>Jun 2021</td>
</tr>
</tbody>
</table>

a Denotes industry involvement

NCT: national clinical trial.

References

Documentation for Clinical Review

Please provide the following documentation (if when requested):

- History and physical and/or cardiology consultation report including:
 - Clinical justification for device
 - Description of symptoms present and frequency
 - Name and type of device including vendor name
 - Documentation of prior trial of Holter monitor or external ambulatory event monitor
 - History of AF including (if applicable):
 - Past catheter ablation history
 - Anticoagulation status and plan for discontinuation

Post Service

- Ambulatory monitor report

Coding

This Policy relates only to the services or supplies described herein. Benefits may vary according to product design; therefore, contract language should be reviewed before applying the terms of the Policy. Inclusion or exclusion of codes does not constitute or imply member coverage or provider reimbursement.

MN/IE

The following services may be considered medically necessary in certain instances and investigational in others. Services may be considered medically necessary when policy criteria
are met. Services may be considered investigational when the policy criteria are not met or when the code describes application of a product in the position statement that is investigational.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0295T</td>
<td>External electrocardiographic recording for more than 48 hours up to 21 days by continuous rhythm recording and storage; includes recording, scanning analysis with report, review and interpretation</td>
</tr>
<tr>
<td></td>
<td>0296T</td>
<td>External electrocardiographic recording for more than 48 hours up to 21 days by continuous rhythm recording and storage; recording (includes connection and initial recording)</td>
</tr>
<tr>
<td></td>
<td>0297T</td>
<td>External electrocardiographic recording for more than 48 hours up to 21 days by continuous rhythm recording and storage; scanning analysis with report</td>
</tr>
<tr>
<td></td>
<td>0298T</td>
<td>External electrocardiographic recording for more than 48 hours up to 21 days by continuous rhythm recording and storage; review and interpretation</td>
</tr>
<tr>
<td></td>
<td>0497T</td>
<td>External patient-activated, physician- or other qualified health care professional-prescribed, electrocardiographic rhythm derived event recorder without 24 hour attended monitoring; in-office connection</td>
</tr>
<tr>
<td></td>
<td>0498T</td>
<td>External patient-activated, physician- or other qualified health care professional-prescribed, electrocardiographic rhythm derived event recording without 24 hour attended monitoring; review and interpretation by a physician or other qualified health care professional per 30 days with at least one patient-generated triggered event</td>
</tr>
<tr>
<td></td>
<td>33282</td>
<td>Implantation of patient-activated cardiac event recorder (Deleted code effective 1/1/2019)</td>
</tr>
<tr>
<td></td>
<td>33284</td>
<td>Removal of an implantable, patient-activated cardiac event recorder (Deleted code effective 1/1/2019)</td>
</tr>
<tr>
<td></td>
<td>33285</td>
<td>Insertion, subcutaneous cardiac rhythm monitor, including programming (Code effective 1/1/2019)</td>
</tr>
<tr>
<td></td>
<td>33286</td>
<td>Removal, subcutaneous cardiac rhythm monitor (Code effective 1/1/2019)</td>
</tr>
<tr>
<td></td>
<td>93228</td>
<td>External mobile cardiovascular telemetry with electrocardiographic recording, concurrent computerized real time data analysis and greater than 24 hours of accessible ECG data storage (retrievable with query) with ECG triggered and patient selected events transmitted to a remote attended surveillance center for up to 30 days; review and interpretation with report by a physician or other qualified health care professional</td>
</tr>
<tr>
<td></td>
<td>93229</td>
<td>External mobile cardiovascular telemetry with electrocardiographic recording, concurrent computerized real time data analysis and greater than 24 hours of accessible ECG data storage (retrievable with query) with ECG triggered and patient selected events transmitted to a remote attended surveillance center for up to 30 days; technical support for connection and patient instructions for use, attended surveillance, analysis and transmission of daily and emergent data reports as prescribed by a physician or other qualified health care professional</td>
</tr>
<tr>
<td></td>
<td>93268</td>
<td>External patient and, when performed, auto activated electrocardiographic rhythm derived event recording with symptom-related memory loop with remote download capability up to 30 days, 24-hour attended monitoring; includes transmission, review and interpretation</td>
</tr>
<tr>
<td>Type</td>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>93270</td>
<td>Interpretation by a physician or other qualified health care professional with symptom-related memory loop with remote download capability up to 30 days, 24-hour attended monitoring; recording (includes connection, recording, and disconnection)</td>
</tr>
<tr>
<td></td>
<td>93271</td>
<td>External patient and, when performed, auto activated electrocardiographic rhythm derived event recording with symptom-related memory loop with remote download capability up to 30 days, 24-hour attended monitoring; transmission and analysis</td>
</tr>
<tr>
<td></td>
<td>93272</td>
<td>External patient and, when performed, auto activated electrocardiographic rhythm derived event recording with symptom-related memory loop with remote download capability up to 30 days, 24-hour attended monitoring; review and interpretation by a physician or other qualified health care professional</td>
</tr>
<tr>
<td>HCPCS</td>
<td>C1764</td>
<td>Event recorder, cardiac (implantable)</td>
</tr>
<tr>
<td></td>
<td>E0616</td>
<td>Implantable cardiac event recorder with memory, activator, and programmer</td>
</tr>
<tr>
<td>ICD-10 Procedure</td>
<td>4A12X45</td>
<td>Monitoring of Cardiac Electrical Activity, Ambulatory, External Approach</td>
</tr>
</tbody>
</table>

Policy History

This section provides a chronological history of the activities, updates and changes that have occurred with this Medical Policy.

<table>
<thead>
<tr>
<th>Effective Date</th>
<th>Action</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/05/2007</td>
<td>BCBSA Medical Policy adoption</td>
<td></td>
</tr>
<tr>
<td>12/18/2009</td>
<td>Policy revision without position change Title change from Ambulatory Events Monitors and Mobile Outpatient Cardiac Telemetry</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>01/15/2010</td>
<td>Coding Update</td>
<td>Administrative Review</td>
</tr>
<tr>
<td>03/13/2012</td>
<td>Coding Update</td>
<td>Administrative Review</td>
</tr>
<tr>
<td>04/05/2013</td>
<td>Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>03/28/2014</td>
<td>Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>09/30/2014</td>
<td>Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>12/31/2014</td>
<td>Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>08/31/2015</td>
<td>Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>07/01/2016</td>
<td>Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>07/01/2017</td>
<td>Policy revision with position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>02/01/2018</td>
<td>Coding update</td>
<td>Administrative Review</td>
</tr>
<tr>
<td>07/01/2018</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>02/01/2019</td>
<td>Coding update</td>
<td>Administrative Review</td>
</tr>
<tr>
<td>07/01/2019</td>
<td>Policy revision without position change</td>
<td>Medical Policy Committee</td>
</tr>
<tr>
<td>09/01/2019</td>
<td>Policy revision without position change</td>
<td>Administrative Review</td>
</tr>
</tbody>
</table>

Definitions of Decision Determinations

Medically Necessary: A treatment, procedure, or drug is medically necessary only when it has been established as safe and effective for the particular symptoms or diagnosis, is not investigational or experimental, is not being provided primarily for the convenience of the patient or the provider, and is provided at the most appropriate level to treat the condition.
Investigational/Experimental: A treatment, procedure, or drug is investigational when it has not been recognized as safe and effective for use in treating the particular condition in accordance with generally accepted professional medical standards. This includes services where approval by the federal or state governmental is required prior to use, but has not yet been granted.

Split Evaluation: Blue Shield of California / Blue Shield of California Life & Health Insurance Company (Blue Shield) policy review can result in a split evaluation, where a treatment, procedure, or drug will be considered to be investigational for certain indications or conditions, but will be deemed safe and effective for other indications or conditions, and therefore potentially medically necessary in those instances.

Prior Authorization Requirements (as applicable to your plan)

Within five days before the actual date of service, the provider must confirm with Blue Shield that the member's health plan coverage is still in effect. Blue Shield reserves the right to revoke an authorization prior to services being rendered based on cancellation of the member's eligibility. Final determination of benefits will be made after review of the claim for limitations or exclusions.

Questions regarding the applicability of this policy should be directed to the Prior Authorization Department. Please call (800) 541-6652 or visit the provider portal at www.blueshieldca.com/provider.

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. Blue Shield of California may consider published peer-reviewed scientific literature, national guidelines, and local standards of practice in developing its medical policy. Federal and state law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over medical policy and must be considered first in determining covered services. Member contracts may differ in their benefits. Blue Shield reserves the right to review and update policies as appropriate.